
ASSESSING AND IMPROVING

OBJECT -ORIENTED DESIGN

HABILITATION THESIS

DR. RADU MARINESCU

MAY 2012

To Cristina and Mitzu

Acknowledgements

It is so unfair that this habilitation thesis must have a single author...because I owe so much
to many people who have such a huge contribution to all my achievements.

Words are too poor to express my gratitude to George Ganea and Ioana Verebi. George,
Ioana, I am absolutely sure that without having you close to me almost every day for the last
five years none of my achievements would have existed. Thank you so much for sacrificing
your time and energy just for the sake of us working together. Thank you for keeping alive
my dream of having you as my first Ph.D. students, even through moments all hope seemed
to vanish. Thank you for sharing my dreams, and for patiently listening to my endless talks
about various crazy things. I just wish that our work together and friendship would never
end.

I am very grateful for having the chance of meeting Marius Minea. Marius, it’s such an
amazing experience to plan, work, fight, laugh and cry together with you. Thank you for
the infinite ways in which you supported and encouraged me over the last ten years. Your
friendship is one of the most wonderful gifts I received so far.

Doru Gı̂rba is the living proof that physical distance can be bridged by a warm friendship
and collaboration. Doru, when looking back at the years since we first met, I can’t believe how
amazing this experience has been. I am so deeply indebted to you for permanently stirring me
up with your crazy dreams and wild ideas, and for being there for me every time when I was
in need. I still hope that one day our friendship will become so powerful to change the laws of
physics (or life?) and eliminate the kilometers that separate us.

I owe a lot of gratitude to Adrian Trifu for challenging me to start the Intooitus spin-
off, which is certainly one of the most amazing experiences I’ve had so far. Adi, thank you
for inviting me on this fabulous journey, thank you for the never-ending discussions that
sometimes sharpened my arguments, and most of the times help me understand that I was
simply wrong. Thank you for helping me look at things from a completely different perspective,
and forgive me that I am often too stubborn and proud to admit that I need another point of
view.

Working with the members of the LOOSE Research Group (LRG) in Timis, oara is such an
extraordinary experience. I want to thank Petru Mihancea, Dan Cosma, Mihai Balint and
Richard Wettel for our fruitful work on various projects and for the days and nights that
we wrote papers together. I so much hope that we will re-intensify this experience over the
coming months and years. I am also deeply indebted to Daniel Rat, iu, Mircea Trifu and for
all the amazing years we spent together in the early days of LOOSE, but also for our more
recent collaborations. After all these years I want to thank you one more time for your warm
friendship and enthusiasm.

I also want to thank several diploma and master students for their exceptional work that
contributed to some of my past achievements and/or currently ongoing projects, namely:
Andrei Chis, , George Pucea, Caius Brindescu, Mihai Codoban, Adi Dozsa and Domi Tamas, -
Selicean.

I would like to warmly thank my parents for all their love, for all their mental and financial
support and for believing in me even when I didn’t. I am so happy that you lived to see me
reach this stage. Dad, you were right: balance and hard work are more important than being
a genius; and, yes, one doesn’t have to be a genius to achieve great things!

Cristina, how can I thank you for all the love, joy, balance and wisdom that you pour into
me day by day? Without your constant encouragement I would have never finished this work,
and without your love it wouldn’t have been worth doing it. Mitzu, I thank you for all the
times you phoned to my office to call me (urgently!) home so that we can play together, and
for constantly asking me if I finished writing. I am so proud to finally tell you: I am done!
Cristina and Mitzu, you are my most precious gift.

Above all, I thank God for all the talents He blessed me with, for His merciful and faith-
ful guidance over all these years and, most importantly, for saving me and granting me a
spirit of wisdom and revelation to see His plan. After all, this is the one and only thing that
fundamentally counts.

Timişoara, Radu Marinescu
April 30, 2012

Summary

In a society characterized by frequent changes, software must evolve at the same pace.
To be able to evolve and adapt to new requirements, software has to be prepared for
changes, which in return require high design and implementation quality.

This habilitation thesis is the summary of the research that we performed during
the last ten years on the assessment and improvement of design quality in object-
oriented systems. This research direction has grown significantly over the last years
due to the exponential increase of large-scale object-oriented systems. In such sys-
tems integration or bug fixing become so unpredictable that it becomes more cost-
effective to rewrite the system. However, the cause of such situations is less visible:
the internal quality of the system’s design is declining; and duplicated code, overly
complex methods or non-cohesive classes are just a few signs of this decline. These,
and many others, are usually the symptoms of higher-level design problems, which
are usually known as design flaws.

In software engineering, measurement is essential, as otherwise we risk losing
control due to excessive complexity. Consequently, software metrics are the founda-
tion of our research. Thus, we start the thesis by describing our approach to defining
metrics in a way that is both accurate and easy to understand, and to establish-
ing meaningful metrics thresholds. In the context of metrics we also introduce the
Overview Pyramid, an integrated, metrics-based visualization aimed to characterize
the complexity, coupling and inheritance usage in object-oriented system.

While metrics are needed for the assessment of software design, we argue that iso-
lated metrics cannot serve this goal in a way that leads to improvement actions. Going
from abnormal numbers to the recognition of design flaws is impossible because the
interpretation of individual metrics is too fine grained to indicate real design flaws.
To support the detection and location of design problems, we introduce the detec-
tion strategy technique for creating metrics-based rules that capture deviations from
principles and heuristics of good design. Consequently, engineers can directly spot
flawed design fragments rather than inferring the flaws from a large set of abnormal
metric values. We have defined such rules for around 20 important flaws related to
object-oriented design. In the thesis we also discuss various approaches for extend-
ing the set of detectable design flaws and for refining the accuracy of these detection
techniques.

Detection strategies are a major step forward, but assessing the design of a system
requires more than just a list of design flaw instances. Quality models are needed to
get an overall assessment of design quality. We present our two approaches to quality
models, both based on the idea of using detected design flaws as first-class entities in
quality models. We describe the Factor-Strategy model which improves over traditional
approaches by facilitating their construction and the interpretation as quality is related
to violations of concrete design rules. More recent, we developed the idea further and
built an assessment framework that exposes and quantifies symptoms of design debt.
This framework contributes to increasing the visibility of design flaws that result from
debt-incurring design changes.

Industrial systems are extremely large, and therefore the automation of assess-
ment approaches is crucial. Therefore, we need to build scalable analysis tools. In
this context, we present IPLASMA, which is an extensible integrated assessment frame-
work that can be used for periodic code-reviews. We also introduce the INCODE plugin
which is an instantiation of our vision to make assessment a continuous process, in
which detecting, understanding and removing design problems will become part of
the day to day activity of developers.

iii

Assessing the design quality of software is certainly important; however, the ul-
timate goal is to improve the quality of the assessed system. Therefore, our main
research focus has recently shifted towards bridging the gap between the detection
and correction of design problems, by creating tool-supported techniques for describ-
ing and executing contextual, problem-driven correction strategies. Thus, we close
this thesis by presenting our first research results in this new direction.

Our research so far has had a significant impact both in the international academic
community, as well as in the software industry. Our publications have received over
250 citations in major software engineering journals and conferences, including 13
citations in the IEEE Transactions on Software Engineering, and 15 citations in the
IEEE International Conference on Software Engineering. The quality assessment soft-
ware industry has also acknowledged the relevance of these research achievements,
by adopting our techniques in some of their CASE tools. In 2009 we received the
IBM John Backus Award, offered by IBM in a worldwide competition to two mid-level
career scientists, by a jury who included two Turing Award recipients. The award was
granted for “having done the most to improve programmer productivity”.

For the future, we plan to grow our research on several key directions. First we
will continue the work on better connecting assessment and correction activities. We
also plan to investigate how quality assessment can be efficiently applied to hybrid
software systems which mix different programming languages or even paradigms.
Another plan is to conduct a broad empirical validation of assessment techniques,
by creating a comprehensive metrics benchmarking methodology, operationalized by
proper tools. We aim to perform this validation on at least 10.000 projects. The
analysis results will be used to calibrate the quality assessment techniques and to
detect potential inconsistencies in quality models.

iv

Summary (limba română)

Într-o societate caracterizată prin schimbări frecvente, sistemele software trebuie să
evolueze ı̂n acelas, i ritm. Pentru a putea să evolueze, adaptându-se noilor cerint,e,
sistemele software trebuie să fie pregătite pentru schimbare, ceea ce implică o calitate
foarte bună a proiectării s, i a implementării.

Această teză de abilitare reprezintă sinteza cercetării pe care am efectuat-o pe
parcursul ultimilor zece ani ı̂n domeniul evaluării s, i ı̂mbunătăt, irii calităt, ii proiectării
ı̂n sisteme orientate-pe-obiecte. În ultimii ani, acestă direct, ie de cercetare a căpătat
tot mai multă important, ă odată cu cres, terea exponent, ială a numărului de sisteme
complexe, orientate-pe-obiecte. În astfel de sisteme integrarea sau depanarea tind să
devină atât de impredictibile ı̂ncât adesea devine mai eficientă rescrierea sistemului.
Cauza unor astfel de situat, ii este ı̂nsă ascunsă: calitatea internă a proiectării se
degradează, iar codul duplicat, metodele excesiv de complexe sau clasele necoezive
sunt doar câteva dintre semnele acestui declin. Acestea, s, i multe altele, sunt adesea
simptomele unor probleme de proiectare de nivel mai ı̂nalt, cunoscute sub numele de
carent,e de proiectare.

În ingineria software măsurarea este esent, ială ı̂ntrucât altfel riscăm să pierdem
controlul din cauza complexităt, ii excesive. În consecint, ă, metricile software reprezintă
fundamentul cercetării noastre. As, adar, această teză ı̂ncepe cu o descriere a abordărilor
noastre legate de definirea metricilor ı̂ntr-un mod care să fie deopotrivă precis s, i us, or
de ı̂nt,eles, precum s, i cu abordarea legată de stabilirea unor valori de prag semni-
ficative. În acest context al măsurării software-ului descriem s, i Overview Pyramid, o
vizualizare integrată, bazată pe metrici, ce urmăres, te să caracterizeze ı̂n ansamblu
un sistem orientat-pe-obiecte din perspectiva complexităt, ii, a cuplajului s, i a utilizării
relat, iei de mos, tenire.

Des, i metricile sunt necesare pentru evaluarea proiectării, sust, inem că metricile
folosite ı̂n izolare nu pot ajuta la evaluare ı̂ntr-un mod care să faciliteze corect, ia sis-
temului evaluat. Detectarea carent,elor de proiectare pornind de la valori anormale de
metrici este imposibil de realizat deoarece interpretarea metricilor individuale are o
granularitate prea fină pentru a indica probleme reale de proiectare. Pentru a facilita
detect, ia s, i localizarea problemelor de proiectare, am introdus tehnica strategiilor de
detect, ie prin care se pot defini reguli bazate pe metrici ce descriu deviat, ii de la prin-
cipiile si regulile de bună proiectare. Astfel, inginerii pot detecta nemijlocit fragmente
de cod afectate de carent,e de proiectare ı̂n loc să fie nevoit, i a le infera dintr-o mult, ime
de valori anormale de metrici. Am definit circa 20 de astfel de reguli referitoare la
carent,e de proiectare importante. În această teză sunt deasemenea discutate diferite
abordări pentru extinderea setului de carent,e detectabile s, i pentru rafinarea preciziei
acestor tehnici de detect, ie.

Strategiile de detect, ie reprezintă un mare pas ı̂nainte, dar cu toate acestea eval-
uarea proiectării unui sistem necesită mai mult decât o simplă listă cu instant,e de
carent,e de proiectare detectate. Pentru o evaluare globală a calităt, ii proiectării sunt
necesare modele de calitate. Vom prezenta cele două abordări proprii referitoare la
modele de calitate, ambele centrate ı̂n jurul ideii de a folosi carent,ele de proiectare
detectate ca entităt, i primare ale acestor modele. Vom descrie modelul Factor-Strategy
care aduce ı̂mbunătăt, iri fat, ă de abordările tradit, ionale simplificând construct, ia s, i
interpretarea modelelor, prin relat, ionarea calităt, ii direct cu ı̂ncălcări ale unor reg-
uli concrete de proiectare. Recent, am dezvoltat s, i mai mult această abordare s, i
am construit un cadru conceptual prin care pot fi expuse s, i cuantificate simptome
ale restant,elor de proiectare. Acest cadru conceptual contribuie la expunerea mai
pronunt,ată a carent,elor de proiectare rezultate din modificări nepotrivite ale sistemu-

v

lui.
Sistemele software industriale sunt extrem de mari s, i de aceea automatizarea

tehnicilor de evaluare este esent, ială. De aceea este necesar să construim instru-
mente de analiză scalabile. În acest context, vom prezenta IPLASMA, un instrument
integrat s, i extensibil de analiză, ce poate fi folosit pentru evaluări periodice ale codu-
lui. De asemenea, vom prezenta s, i INCODE un plugin reprezentativ pentru viziunea
noastră de a transforma evaluarea calităt, ii ı̂ntr-un proces continuu, ı̂n care detect, ia,
ı̂nt,elegerea s, i corect, ia problemelor de proiectare să devină parte a activităt, ii cotidiene
de programare.

Partea de evaluare a calităt, ii proiectării este cu sigurant, ă importantă, dar scopul
ultim este acela de a ı̂mbunătăt, i calitatea sistemului evaluat. De aceea, cercetările
noastre mai recente s-au refocalizat ı̂nspre conectarea fazelor de detect, ie s, i de corect, ie
a carent,elor de proiectare. Astfel, am ı̂nceput să dezvoltăm technici automatizate de
descriere s, i execut, ie a unor strategii de corect, ie contextualizate s, i focalizate. Prin
urmare, teza va fi concluzionată de prezentarea primelor rezultate obt, inute ı̂n această
nouă direct, ie de cercetare.

Rezultatele de până acum ale cercetării noastre au avut un impact semnificativ
atât ı̂n comunitatea academică internat, ională, precum s, i ı̂n rândurile industriei soft-
ware. Publicat, iile noastre au strâns mai mult de 250 citări ı̂n reviste s, i conferint,e
internat, ionale de prim rang ı̂n ingineria software, inclusiv 13 citări ı̂n IEEE Trans-
actions on Software Engineering s, i alte 15 citări ı̂n IEEE International Conference on
Software Engineering. Industria producătoare de instrumente de asigurare a calitătii
software-ului a confirmat de asemenea relevant,a rezultatelor obt, inute, adoptând un-
ele din tehnicile pe care le-am dezvoltat. În 2009 am primit premiul IBM John Backus,
oferit de către IBM ı̂ntr-o competit, ie mondială pentru doi cercetători care “au făcut cel
mai mult pentru ı̂mbunătăt, irea productivităt, ii programatorilor”, din juriu făcând parte
s, i doi câs, tigători ai premiului Turing.

Pe viitor ne propunem să dezvoltăm această cercetare ı̂n câteva direct, ii cheie. În
primul rând vom continua să lucrăm ı̂n direct, ia unei punt, i mai solide ı̂ntre activităt, ile
de evaluare s, i de corect, ie. Ne propunem de asemenea să investigăm cum tehnicile
dezvoltate pot fi aplicate la sisteme software hibride ce mixează diferite limbaje sau
chiar paradigme de programare. Un alt plan este acela de a pune la punct o amplă
validare empirică a tehnicilor de evaluare, definind o metodologie complexă de analiză
a valorilor metricilor, ce va fi operat, ionalizată prin unelte adecvate. Ne dorim să
realizăm acestă validare pe o bază de cel put, in 10.000 de proiecte. Rezultatele acestei
analize vor fi utilizate pentru a calibra metricile folosite in tehnicile de evaluare a
calităt, ii s, i pentru a detecta potent, iale incosistent,e ı̂n modelele de calitate.

vi

Contents

I Achievements 1

1 Introduction 3
1.1 Context and Motivation . 3
1.2 Research Roadmap . 4
1.3 Summary of Contributions and Impact . 6

1.3.1 Major Contributions . 6
1.3.2 Citations . 7
1.3.3 Awards . 7
1.3.4 Community Service . 8
1.3.5 LOOSE: an Educational Innovation 8

1.4 Research Environment and Funding . 8
1.4.1 LOOSE Research Group . 8
1.4.2 Research Grants . 9

2 Measurement of Software Design 11
2.1 Problem Statement . 11
2.2 Design Models: the Foundation of Measurement 12
2.3 SAIL: Specification of Design Metrics . 14
2.4 Determining Metric Thresholds . 15
2.5 The Overview Pyramid . 17

2.5.1 Components of the Overview Pyramid 18
2.5.2 Interpreting the Overview Pyramid 20

3 Detection of Design Flaws 23
3.1 Problem Statement . 23
3.2 Detection Strategies: Rules for Detecting Design Flaws 24

3.2.1 Defining a Detection Strategy . 24
3.2.2 Detection Strategies Exemplified . 25
3.2.3 The Issue of Thresholds . 28
3.2.4 Web of Correlated Detection Strategies 29

3.3 History-Enriched Detection of Design Flaws 29
3.3.1 Refining Detection Rules . 30
3.3.2 Detecting History-Specific Flaws . 31

3.4 Detection of Duplicated Code . 33
3.5 Verification of Architectural Constraints 35

4 Assessment of Design Quality 39
4.1 Problem Statement . 39
4.2 Factory-Strategy Quality Model . 40

4.2.1 Limitations of Factor-Criteria-Metrics Models 41
4.2.2 Factor-Strategy Model: Construction Principle 42

vii

CONTENTS

4.2.3 Stepwise Construction Methodology 43
4.2.4 A Factor-Strategy Model for Maintainability 44

4.3 Assessing Technical Debt . 47
4.3.1 Framework for Assessing Debt Symptoms 48
4.3.2 Experimental Remarks . 50

5 Automation of Design Assessment 53
5.1 Problem Statement . 53
5.2 iPlasma: an Integrated Quality Assessment Platform 54

5.2.1 MEMORIA and the Model Extractors 55
5.2.2 Analyses for Quality Assessment 55
5.2.3 Insider: the Integrating Front-end 56

5.3 inCode: Continuous Quality Assessment 57
5.3.1 Continuous assessment mode . 58
5.3.2 Global assessment mode . 59

6 Improvement of Software Design 63
6.1 Problem Statement . 63
6.2 Correction Plans . 65
6.3 Correction Strategies . 68

6.3.1 Detection Strategy . 68
6.3.2 Suggested Correction Plans . 69
6.3.3 Implementation of the Correction Strategy 70

6.4 Continuous Detection and Correction by Example 72

II Future Plans 77

7 Design Assessment and Improvement: The Challenges 79
7.1 Closing the Gap Between Flaw Detection and Correction 79

7.1.1 Impact Analysis of Correction Strategies 79
7.1.2 Extending Correction Strategies . 80

7.2 Extending and Refining Detection Rules 80
7.2.1 Extending Detection Rules for Multi-Paradigm Systems 80
7.2.2 Defect-Based Refinement of Detection Techniques 83

7.3 Calibration of Metrics for Quality Assessment 84
7.3.1 Methodology for tool calibration and validation 84
7.3.2 Tools for calibration and validation 84

III References 87

Bibliography 96

viii

Part I

Achievements

Chapter 1

Introduction

This habilitation thesis is a summary of the research we performed in the area of
quality assessment and improvement of object-oriented systems, over a period of al-
most ten years. The habilitation covers the research performed since the defense of
the PhD thesis, in December 2002 and until this habilitation was printed. In fact we
started this research 15 years ago, with a diploma thesis on software metrics. This
chapter presents the context of this work in a nutshell, summarizes our contributions
and proposes a roadmap of the document for the reader.

1.1 Context and Motivation

In an information technology society that is increasingly relying on software, software
productivity and quality continue to fall short of expectations: software systems suffer
from signs of aging [Par94] as they are adapted to changing requirements. The main
reason for this problem is that activities of software maintenance and evolution are
still undervalued in traditional software development processes. The only way to
overcome or avoid the negative effects of aging in legacy software systems and to
facilitate their smooth evolution is by providing engineers with a fully automated and
integrated support for the entire process of software evolution.

The issue of object-oriented software evolution is an important matter in today's
software industry, and it will definitely continue being a vital matter in tomorrow's
software industry. The law of software entropy [LPR+97] dictates that even when a
system starts off in a well-designed state, requirements evolve and customers de-
mand new functionality, frequently in ways the original design did not anticipate.
A complete redesign may not be practical, and a system is bound to gradually lose
its original clean structure and deform into an unmaintainable, rigid and hard to
understand bowl of “object-oriented spaghetti” [WH, BMM98]. In order to postpone
the software decay and at least partially save its technical and economical value a
rigorous process to control the evolution of software is a must.

It is well known both that both in software engineering theory and also in practice,
large-scale, complex applications that prove a poor design and implementation are
very dangerous because of the delayed effect of these structural problems [DDN03].
The applications are going to run correctly a period of time, but their adaptation to
new requirements is going to be unfeasible from the economical point of view. A late
discovery of this problem can be very dangerous because rebuilding the application
can be very expensive, while in the case of large enterprise applications it is virtually
impossible [DM86]. This emphasizes the need to analyze the software from multiple
points of view in order to detect on time the design and implementation problems that
could inhibit or make very expensive the evolution of the system.

3

1.2. RESEARCH ROADMAP

Like all human activities, the process of designing software is error prone and
object-oriented design makes no exception. The flaws of the design structure have
a strong negative impact on quality attributes such as flexibility or maintainability
[FBB+99]. Thus, the identification and detection of these design problems is essential
for the evaluation and improvement of software quality. The fact that the software in-
dustry is nowadays confronted with a big number of large-scale legacy systems written
in an object-oriented language, which are monolithic, inflexible and hard to maintain
shows that just knowing the syntax elements of an object-oriented language or the
concepts involved in the object-oriented technology is far from being sufficient to pro-
duce good software. A good object-oriented design needs design rules and heuristics
[JF88, Rie96] that must be known and used.

1.2 Research Roadmap

In this context, our research has been focused on the quality assessment and im-
provement of object-oriented systems. Figure 1.1 presents the main parts of our this
research field and their relations. In fact, these are the phases of the general and
well-established reengineering and evolution life-cycle [DDN03].

}

{

}

{

}

{
}

{

}

{

Understandability

Quality

Changeability
Reusability

Size &
Complexity Hierarchies

Cohesion

Coupling

Encapsulation

1

1

2

2

1

1

2 2

2 2

2

2
2 2

2

2

2 2

}

{

}

{

}

{

}

{

M
od

el

M
ea

su
re

1.2

4

20

17
51

0.9

0.2 1

42 1.7 Detect Assess

 Redesign

 Recode

Automate

Chapter 3 Chapter 4

Chapter 2

Chapter 2

Chapter 6

Chapter 6

Chapter 5

Figure 1.1: Roadmap of our research

This process starts from the source code of a legacy system i.e., a software system
that (i) one has inherited and which (ii) is valuable. Legacy systems usually show
signs of aging software [Par94] i.e., non-available original developers, lack of docu-
mentation, monolithic design, code bloat etc.. On of our main assumptions is that the
only source of reliable information is the code itself. Documentation is most of the
time inexistent [Par94], and sometimes even comments are missing or obsolete.

Model the Software The process of quality assessment and improvement starts with
abstracting from the source and creating simplified representations of the code ele-
ments i.e., extracting various design models, based on which further measurements

4

CHAPTER 1. INTRODUCTION

and other assessment analyses can be performed. We present our contributions re-
garding modeling in Chapter 2, Section 2.2.

Measure the Design In order to assess and control quality one needs proper quan-
tification means [DM86]. This is why the cornerstone of our research lies in software
metrics. After introducing our modeling approach, the rest of Chapter 2 presents
our contribution to two major problems in software measurement, namely: (i) find-
ing means for an accurate and understandable definition of metrics (Section 2.3) and
(ii) establishing meaningful metrics thresholds (Section 2.4). Last, but not least we
introduce the Overview Pyramid (Section 2.5), which is an integrated, metrics-based
visualization aimed to characterize the complexity, coupling and inheritance usage in
object-oriented system.

Detect Design Flaws While it is clear that metrics should be employed for the eval-
uation of software design, the main question is: what exactly should we measure? For
design quality assessment, we need to quantify how well a given design complies with
a set of design principles, rules and heuristics. Chapter 3 introduces our novel ap-
proach of detection strategies (Section 3.2) that allows to quantify specific violations of
such principles and rules. We illustrate the principle of detection strategies and show
various techniques for enhancing and refining them by using historical information
(Section 3.3). After describing a new technique for detecting fragmented code dupli-
cation (Section 3.4), the chapter is closed by presenting our approach for specifying
and verifying project-specific (architectural) rules (Section 3.5).

Assess Design Quality Using detection strategies to raise the abstraction level in de-
tecting design flaws is a significant step forward. However, in order to assess the de-
sign of a system one needs more than just a (long) list of design flaw instances. In this
context, quality models are needed for getting an overall assessment of design quality.
In Chapter 4 we present our two novel approaches to quality models, both based on
the idea of building on using detected design flaws as first-class entities. First we
discuss our earlier attempt, namely the Factor-Strategy model (Section 4.2). Then,
in the second part of this chapter we present our very recent assessment framework
that exposes and quantifies symptoms of design debt. The framework contributes to
increasing the visibility of design flaws that result from debt-incurring design changes
(Section 4.3).

Improve the Design Assessing the design quality of software is certainly important;
however, the ultimate goal is to improve the quality of the assessed system. In Chap-
ter 6 we close the circle and describe our most recent research on bridging the gap
between the detection and correction of design flaws. There are two main contribu-
tions that we describe here: (i) the conceptual approach for describing higher-level
correction strategies defined at the same abstraction level as detection strategies (Sec-
tion 6.3); and (ii) the envisioned tool support for executing correction strategies (
Section 6.4).

Automate the Assessment Legacy systems tend to be extremely large, up to 10-20
million lines of code, and therefore the scalability of the proposed approaches is cru-
cial. Because of this we put a particular emphasis on validating our ideas by building
scalable tools. In Chapter 5 we describe our two main approaches towards automat-
ing quality assessment: IPLASMA (Section 5.2) is a complex integrated assessment

5

1.3. SUMMARY OF CONTRIBUTIONS AND IMPACT

framework that can be used for standard assessments and code-reviews; on the other
hand, more recently, we took a completely new approach on assessment tools by cre-
ating INCODE (Section 5.3) as an Eclipse plugin that transforms assessment into an
agile, continuous process.

In order to provide a clear and coherent flow of our research, the chapters of this
habilitation thesis follow the sequence described above (see Figure 1.1). Moreover, to
ease the reading of this document, we follow a similar structure during every chap-
ter, namely: (i) the research problem, together with a condensed state of the art i.e.,
other approaches addressing the research problem, and then (ii) our solutions to the
problem, emphasizing their novelty and scientific contribution.

1.3 Summary of Contributions and Impact

As already mentioned, our research has been focused on the assessment and restruc-
turing of object-oriented software systems.

1.3.1 Major Contributions

In this research domain, we provided in the last 10 years a number of world-wide
recognized contributions:

• The detection strategy concept [Mar04, Mar05, LM06] is a totally novel concept,
which raises the level of abstraction in using software metrics. This approach
made possible for the first time to define quantifiable design rules, so that these
rules can be automatically checked on a certain project.

• A methodology for detecting design flaws using metrics-based rules [MM05, TM05,
RDGM04]. As an application of the detection strategy concept, we proposed a
suite of around 20 strategies which correspond to object-oriented design flaws
that are intensely discussed in an informal manner in the literature. The major
step forward consisted in making these design problems automatically detectable
in large-scale software systems.

• Adoption. The detection strategy concept [Mar04, Mar05], and a suite of metrics
defined earlier [Mar99] were integrated in one of Borland’s CASE tools. Further-
more, using the techniques he defined, we have provided consultancy for first
ranking companies from Europe: Telelogic France, Sema Group, ABB, Togeth-
erSoft, OCE Software, Alcatel, Siemens Automotive, in the fields of redesigning
and quality assurance of software.

• The Factor-Strategy quality model [MR04]. Unlike the classic model (Factor-
Criteria-Metric) – intensively used in different forms worldwide – this new model
enables, for the first time, not only the assessment of the quality of a software
system, but also the identification of the real causes that make a system to dis-
play a poor quality. This reduces considerably the necessarily amount of time
spent on improving the quality of design.

• The IPLASMA platform [MMG05] that automates the quality assessment tech-
niques for analyzing systems written in C++, Java or C#. Since 2004, IPLASMA

has been used both as a consultancy tool, as well as a QA tool used directly by
programmers in companies to perform code reviews on tens of projects. The tool
has been used both in big corporations (Alcatel-Lucent, Continental, Siemens
AG, Huawei) and local and European SMEs (Savatech, OCE Software, DeComp

6

CHAPTER 1. INTRODUCTION

Brussels etc). IPLASMA has been used to analyze extremely large-scale software
for telecom (about 2 million lines of code) system belonging to Alcatel-Lucent
(Timis, oara). Furthermore, IPLASMA is currently in use in at least 5 European re-
search groups (Software Composition Group at the University of Bern, University
of Lugano, FZI Karlsruhe, TU Munich, University of Inssbruck).

• INCODE [MGV10] is the incarnation of a new way of performing quality assess-
ment, in which design flaws are detected continuously as code is written. This
increases the productivity of programmers in two ways: (i) by warning develop-
ers about the occurrence of a design problem as they appear, which is far more
efficient than the classic code inspections; (ii) by providing contextualized expla-
nations for each instance of a detected problem, instead of confronting program-
mers with just “dry” numbers (i.e., abnormal metrics values, which are hard to
interpret) in a way that leads to real code/design improvements. The INCODE

plugin was downloaded over more than 10.000 times (since May 2008) and is
currently in daily use by programmers from more than 10 software companies
in Europe.

1.3.2 Citations

Our publications on this topic have more than several hundreds of citations in the
literature1. Many of these citations are in the top journals and conferences in the field;
for example, our work has been cited 13 times in the IEEE Transactions on Software
Engineering, 15 times in the IEEE International Conference on Software Engineering,
and 35 times in the IEEE International Conference on Software Maintenance, which is
the premier world-wide event in software maintenance.

Another evidence of the impact is the fact that the book Object-Oriented Metrics in
Practice [LM06] has been sold so for in more than 1.000 copies, and it is among the
top 5 most relevant hits on the “object-oriented metrics” search phrase, both on Google
and Amazon.

1.3.3 Awards

In 2009 we received the IBM John W. Backus Award, which was offered by IBM
in a worldwide competition to two mid-level career scientists who “have done the
most to improve programmer productivity, whether through languages, optimizations,
tools, methodology or any other techniques”. The winners were decided by a jury
that included Turing Award winners Frederic P. Brooks and Frances Allen, as well
as well-known software engineering researchers like Grady Booch, Erich Gamma,
David Harel.

In 2006, we received in a world-wide competition an IBM Eclipse Innovation Award
for envisioning an enhancement of the Eclipse platform that would support program-
mers with a continuous detection of design problems means of detecting on-the-fly
design and code problems (see Section 5.3).

On the educational side, we received in 2009 the Apple Distinguished Educator,
and in 2007 the Bologna Professor awards.

1According to Scholar Google currently the number of citations is over 900, but this number does also
include auto-citations. The number of citations in major journal and conferences is over 250, excluding
auto-citations.

7

1.4. RESEARCH ENVIRONMENT AND FUNDING

1.3.4 Community Service

As a result of the influence of our scientific achievements, we were invited to serve
in over 30 program committees, including all the major conference in this research
field: International Conference on Software Engineering (ICSE, NIER Track) Interna-
tional Conference on Software Maintenance (ICSM), Working Conference on Reverse
Engineering (WCRE), European Conference on Software Maintenance and Reengineer-
ing (CSMR), International Conference on Program Comprehension (ICPC), Model Driven
Engineering Languages and Systems etc..

In 2010 we served as General Chair of the 26th IEEE International Conference on
Software Maintenance (ICSM). The conference was organized in Timis, oara and it was
only the second time in over 25 years when this major event was hosted by an Eastern
European city. In 2011 we served as co-chair of the Doctoral Symposium at WCRE,
and in 2012 as chair of the European Projects track at CSMR. We were recently invited
to join the Steering Committee of the CSMR and to serve as co-chair of the doctoral
symposium at CSMR 2013. Last but not least, since 2011 we are in the editorial
board of the Journal of Software: Evolution and Process.

Over the last ten years we were invited to give several talks at Top 500 universities
like the Technical University of Karlsruhe, Technical University of Munich, University
of Bern, and the University of Valladolid, and also at the IBM T.J. Watson Research
Center (Hawthorne, NY, USA).

1.3.5 LOOSE: an Educational Innovation

In parallel with the research activity, we initiated an innovative educational (faculty)
project in which students were organized in virtual companies and teams, and they
were faced with a simulation of a software development process as it happens in the
real-world. The project was shaped as a competition among these virtual companies,
whereby the best teams and individuals received the LOOSE Awards. The project
was an incredible success, with hundreds of students aiming to be involved in it
over the 5 years since it got started. Later on, when these students got employed in
local companies, they enthusiastically shared with their managers the huge influence
this training had on their programming an software engineering skills. As a result,
we received numerous requests from the managers of Siemens VDO, OCE Software,
and Alcatel-Lucent to migrate this educational concept for the training of their own
programmers. This has lead to a number of similar trainings that impacted around
100 programmers. Step-by-step this educational project had a huge impact on the
programmers from many local software companies.

1.4 Research Environment and Funding

1.4.1 LOOSE Research Group

The work presented here is the result of a research effort lead at the LOOSE Research
Group2. We co-founded LOOSE in 2002, against all odds, considering the fact that
at the moment we were just about to finish the PhD, and software engineering re-
search in Romania was rather low-profile. The vision of starting LOOSE has been to
bring together young researchers from our faculty and outstanding senior students
in computer science, in order to join the research experience of the former, with the
student-hood creativity and enthusiasm of the latter. Over the years, we contributed

2http://loose.upt.ro

8

CHAPTER 1. INTRODUCTION

significantly in making LOOSE one of the leading European groups on software evo-
lution and quality assurance.

LOOSE was founded aiming to set a right balance between performing state-of-
the-art research, and adapting research achievements to the specific needs of soft-
ware companies, especially to those of the many multinational IT companies (e.g.,
Alcatel-Lucent, Siemens VDO Automotive, etc.) that have massively outsourced large
segments of their software development to Eastern Europe. As a result of this vision,
a significant number of excellent students were attracted to research. Some of them
followed a research track, while others became influent people in software companies.

1.4.2 Research Grants

This work has been funded by Romanian and international grants and awards, that
we accessed by competition as Principal Investigator, namely:

• Continuous Assessment and Improvement of Code and Design Quality - IBM John
W. Backus Award from IBM T.J. Watson Research Center, 2009-2011

• Detecting and Correcting Design Flaws using Eclipse - IBM Eclipse Innovation
Award from IBM T.J. Watson Research Center, 2007

• Network of reengineering expertise (NOREX) - Swiss National Science Foundation
(IB7320-110997/2005), 2005-2008

• Methods and instruments for continuous quality assessment in complex software
systems - CNCSIS National Grant (PCE-IDEI 357/2007), 2007-2010

• Distributed environments for controlling and optimizing the evolution of software
systems - CNCSIS National Grant (CEEX 5880/2006), 2006-2008

• Design quality assurance in enterprise software systems - CNCSIS National Grant
(CEEX 3147/2005), 2005-2007

• Modeling, analysis and verification of software systems - CNCSIS National Grant
(27688/2005, A1/GR181/2006), 2005-2006

• Integrated environment for software quality assurance - CNCSIS National Grant
(329840/2004), 2004-2005

9

Chapter 2

Measurement of Software Design

Metrics are a way to control quality [DM86]. In software engineering it is important
and useful to measure systems, because otherwise we risk losing control because of
their complexity. Losing control in such a case could make us ignore the fact that
certain parts of the system grow abnormally or have a bad quality (e.g., code that
is cryptic, uncommented, badly structured, or dead). Consequently, software met-
rics are used to detect design problems as they quantify simple properties of design
structures [HS96].

2.1 Problem Statement

Various software metrics have been defined to address the most important charac-
teristics of good object-oriented design like complexity, cohesion, coupling and in-
heritance [LH93, CK94, BK95, HS96, ADB10]. In practice, appropriate tool support
for metrics calculation is a must for performing quality assessments. Such tools are
presented in [ARK05, Web05]. Unfortunately, many such tools do not go beyond the
computation of a large number of metrics accompanied by the display of metrics in
form of charts and by monitoring if some (oftentimes arbitrary) threshold values are
not exceeded by the software system under scrutiny.

In the context of using metrics there are at least two major issues which must
be addressed carefully: (i) devising empirical threshold values that signify abnormal
characteristics of design entities [LK94], and (ii) using a rigorous approach for defin-
ing and using metrics [BDW99a] in order to avoid the inflation of useless and/or
ill-defined metrics. Concerning thresholds, Lorenz and Kidd have worked on devising
empirical threshold values which signify abnormal characteristics of design entities
[LK94]. These thresholds were established based on the authors’ experience with C++
and Smalltalk projects. Concerning the need for a rigorous approach for defining
and using metrics, Briand et al. defined a unified framework for coupling measure-
ment in object-oriented systems based on source model entities [BDW99a]. Based on
these metrics they verified the coupling measurements at the file level using statis-
tical methods and logical coupling information based on “ripple effects” [BDW99b].
Briand et al. described how coupling can be defined and measured based on dynamic
analysis of systems [ABF04]. This recent study shows that some dynamic coupling
measures are significant indicators of change proneness and that they complement
existing coupling measures that are based on static analysis.

11

2.2. DESIGN MODELS: THE FOUNDATION OF MEASUREMENT

2.2 Design Models: the Foundation of Measurement

In general, a first mandatory step in computing design metrics is the transformation
of source code into a more abstract representation form, in which only those elements
are kept that are relevant in respect to the measurement activities to be performed.
This first abstraction step and the result is usually called meta-modeling. Thus, a
meta-model is a precise definition of the design entities and their types of interactions,
used for defining and applying static analysis techniques. A meta-model has the main
advantage of being easier to manipulate and understand than the code itself. All the
metrics are defined as queries on the meta-model.

A good meta-model should capture only those types of entities that are relevant
for the analysis, together with the properties of those entities and the relationships
that exist between them. In a measurement context, the meta-model defines the
boundaries of our measurement activities. By analyzing the different design entities
that appear in object-oriented systems, we reached the conclusion that they belong
to different categories and consequently have different compositions. The constructs
and rules used to describe the meta-model are therefore distilled in the form of a
meta-meta-model [KPF95].

In the context of describing design measurements in [LM06]1 we proposed a meta-
meta-model in which we represent classes and operations as design entities that have
properties and are in relation (e.g., the visibility level of attributes) with other entities
(e.g., methods that access attributes). This perspective helps us to define almost
every measurement for a design entity in the very simple terms of the following three
elements:

1. The Having Element, i.e., what other entities does the measured entity have
(contain), in the sense of being a scope for those entities? This also includes the
inverse relation: which entity does the measured entity belong to? For example,
an operation has parameters and local variables, while it belongs to a class.

2. The Using Element, i.e., what entities does the measured entity use; and again
the inverse relation: by which entities is the measured one being used? For
example, an operation is using the variables that it accesses, while it is used by
the other operations that call (invoke) it. A class uses another class by extending
it through inheritance, but also uses other classes by communicating with them.

3. The Being Element, i.e., what are the properties of the measured entity? For
example, a property of a class is that it is abstract, while an attribute can have
the property of being “private”.

HAVING in Object-Oriented Design. In Figure 2.1 we see all the containment (HAVE
and BELONGS-TO) relations that are relevant in the context of object-oriented design,
i.e., what other entities does the measured entity have (contain), in the sense of being
a scope for these entities? This also includes the inverse relation: to which entity does
the measured entity belong to? For example, an operation has parameters and local
variables, while it belongs to a class.

USING in Object-Oriented Design In Figure 2.2 we see all direct usage (USE and
USED-BY) relations that are relevant in the context of object-oriented design, i.e.,
what entities does the measured entity use; and again the inverse relation: by which

1This section is partially reproduced from [LM06], including all figures. ©Springer-Verlag Berlin
Heidelberg 2006. Used by permission.

12

CHAPTER 2. MEASUREMENT OF SOFTWARE DESIGN

Figure 2.1: The HAVING relations.

entities is the measured one being used? For example, an operation is using the
variables that it accesses, while it is used by the other operations that call (invoke) it.
A class uses another class by extending it through inheritance, but also uses other
classes by communicating with them.

Figure 2.2: The USING relations.

BEING in Object-Oriented Design. One of the most frequently encountered dilem-
mas when reading any metric definition is: What is really counted? For example, a
simple metric like Number of Methods seems straightforward to define. But at sec-
ond thoughts various questions pop up: Are constructors included? Are inherited
methods counted as well? What about accessor methods (i.e., getters/setters)?

Browsing through an extensive set of object-oriented design metrics we identified
a set of recurring issues that appear in the definition of metrics. We summarize them
below in form of a non-exhaustive set of questions:

• Constructors/Destructor. Should constructors and destructor be counted as meth-
ods of a class?

• Abstract Methods. Should abstract methods be counted as methods of a class?

13

2.3. SAIL: SPECIFICATION OF DESIGN METRICS

• Inherited Members. Should members (data and operation) inherited from ances-
tor classes be counted in a derived class?

• Static Members. When should class members, i.e.,static attributes and opera-
tions, be counted?

Consequently, the HAVING-USING-BEING modeling approach allows for a system-
atic and unambiguous definition of metrics.

2.3 SAIL: Specification of Design Metrics

Design-related analyses can be implemented using almost any programming language
(e.g., Java). Unfortunately, almost all these implementations will be hard to reuse
and understand and thus they hinder the correlation between the results of the im-
plemented analyses. This happens because a single normal programming language
does not provide all the proper mechanisms to ensure the easy implementations of
many different analyses. Implementation approaches based on procedural or object-
oriented programming languages are especially unsatisfactory for non-trivial combi-
nations of model navigation and filtering conditions. On the other hand, approaches
based on querying a repository have another major problem: they miss adequate
mechanisms that would support a better modularization. This leads to analyses that
consist of a monolithic query, which is very hard to maintain.

In this context we created [MMG05] SAIL (Static Analysis Interrogative Language)
as a dedicated language for structural analyses, built on top of an earlier version of
the meta-model presented in Section 2.2. The language provides a set of powerful
mechanisms which facilitate a concise and natural expression of the implemented
analyses. There are three major concepts in SAIL:

1. The integration of a powerful query mechanism (i.e., the select statement) in a
very simple structured programming language, which is syntactically very close
to known programming languages like (C and Java). This brings a twofold ad-
vantage: the language adopts the key advantages of a query language, and it
requires almost no learning effort for a programmer, due to its syntactic similar-
ity with C and Java.

2. The representation of the data model in SAIL, although totally based on data
structures can be used without any overhead both in imperative statements and
in the query mechanism. This differentiates our approach from the embedded
SQL approach because in SAIL the query mechanism is an intrinsic part of the
language and thus it can work directly on the same data model as the rest of the
language mechanisms (which belong to the world of imperative programming).

3. The simple manipulation of collections in SAIL proved to play an important role
in simplifying the writing of code analyses. This is mainly because set operations
an essential building stone in all non-trivial analyses.

Based on these concepts, the understandability and the changeability of the anal-
yses implementation have been increased. On the other hand, it provides modular-
ity mechanisms that allow us to reuse analyses and to compound them into more
complex types of code inspections. In [MMG05] we validate the claim that the us-
age of SAIL would lead to a simplified expression of static analyses by comparing
the size and complexity of implementation for a suite of over 40 object-oriented de-
sign metrics, most of them quite complex. These metrics were all implemented in

14

CHAPTER 2. MEASUREMENT OF SOFTWARE DESIGN

Java, SQL and respectively SAIL. The comparison has revealed that while SQL im-
plementations usually need less lines of code to be implemented than Java or SAIL
the complexity of each line highly exceeds those of found in the approaches based
on structured/object-oriented programming. On the other hand comparing SAIL and
Java implementations, the analyses written in SAIL prove to be significantly more
concise (yet readable) than those implemented in Java. This supports the hypothesis
that while keeping the shape of a procedural language, SAIL adds to it the concise-
ness of a query languages.

2.4 Determining Metric Thresholds

With any used metric we must know what is too high or too low, too much or too
little. In other words, we need some reference points, some means to link a particular
metric value to useful semantics. Thus, a crucial factor in working with metrics is to
be able to interpret values correctly; and for this purpose we need to set thresholds
for most of the metrics that we use. A threshold divides the space of a metric value
into regions; depending on the region a metric value is in, we can make an informed
assessment about the measured entity.

In [LM06] we addressed this issue by proposing a novel approach for determining
thresholds using statistical information 2.

The problem is that there is no such thing as a perfect threshold. However, we can
still define explicable thresholds, i.e., values that can be chosen based on reasonable
arguments. They are not perfect, but they are useful in practice, and this makes them
good enough for our purposes, i.e., assess software artifacts. How do we find them?
In our practical experience in working with metrics, we identified two major sources
for threshold values:

1. Statistical information, i.e., thresholds based on statistical measurements. They
are especially useful for size metrics, where only statistics can tell what usual
or unusual values are. For example, if we measure (count) the number of hairs
on the head of a person (say 10,000) and we want to assess if the result is low,
average or high, we need one or more reference points, i.e., thresholds which
split the space of numbers into meaningful intervals. There is no other way of
finding out than using statistical data, which in this case would tell us that the
average number of hairs (measured over a statistically relevant population) is
between 80,000 and 120,000. These two statistically-determined values help us
determine if a person has an excessive pilosity or if it tends to become bald.

2. Generally accepted semantics, i.e., thresholds that are based on information
which is considered common, widely accepted knowledge. Usually this knowl-
edge is also a result of former statistical observations, but the information is so
widely accepted that it implicitly provides the necessary reference points needed
to classify measurement results. For example, if we were to measure the num-
ber of meals a person consumes per day, then we would use a value of 3 as a
“normality” threshold, as usually people eat three times a day.

What is the average number of operations (methods) per class? Beyond which
number of code lines is a method too large? It is difficult to give a correct answer.
On the one hand, the answer depends on many factors (i.e., how exactly do I count?

2This section is partially reproduced from [LM06], including all figures. ©Springer-Verlag Berlin
Heidelberg 2006. Used by permission.

15

2.4. DETERMINING METRIC THRESHOLDS

what programming language was used? etc.). On the other hand, even after having
specified all the measurement conditions we still need statistical data that provide us
with proper orientation points (i.e., what is too much? what is too little?).

We illustrate next our new approach for computing statistics-based thresholds by
measuring a large number of Java and C++ systems. For illustrating the principle we
consider the following three metrics:

1. Average Number of Methods (NOM) per class

2. Average Lines of Code (LOC) per method (operation)

3. Average Cyclomatic Number (CYCLO) [McC76] per line of code

These three metrics have three important characteristics, which makes the gath-
ering of statistical data for them meaningful: (i) they are elementary metrics that
address the key issues of size and complexity; (ii) they are independent of each other;
(iii) they are independent of the size of a project.

We collected these metrics from a statistical base of 45 Java projects and 37 C++
projects. The projects had been chosen with diversity in mind. They have various sizes
(from 20,000 up to 2,000,000 lines), they come from various application domains, and
we included both open-source and industrial (commercial software) systems. Having
this amount of data, we employed simple statistical techniques in order to determine
for each of these metrics:

• the Typical values, i.e., the range of values that covers most projects.

• the Lower and respectively the Higher margins of this interval.

• the Extreme high values, i.e., a value beyond which we have outliers.

We use two statistical means to find what the typical high and low values are:
(i)Average (AVG), to determine the most typical value of the data set (i.e., the central
tendency); and (ii)Standard deviation (STDEV), to get a measure of how much the
values in the data set are spread. 3.

Knowing the AVG and STDEV values and assuming a normal distribution for the
collected data (i.e., that most values are concentrated in the middle rather than the
margins of the data set), we also know the two margins of the typical values interval
for a metric4 and the threshold for very high values. These are:

• Lower margin: AV G− STDEV .

• Higher margin: AV G+ STDEV .

• Very high: (AV G+ STDEV) · 1.5
In other words we consider a value to be very high if it is 50% higher than the

threshold for a high value.
The computed threshold values are summarized in Figure 2.3. These margins tell

us now the meaning of Low, High and Very High for a given metric. Based on the
information from Figure 2.3 we can state that a Java method is very long if it has at
least 20 LOC, or that a C++ class has few methods if it has between 4 and 9 methods.

The thresholds values presented above are relevant for more than the three metrics
themselves; they can be used to derive thresholds for any metric that can be expressed
in terms of these three metrics.

3The standard deviation is defined as the square root of the variance. This means it is the root
mean square (RMS) deviation from the average. It is defined this way in order to give us a measure of
dispersion that is (i) a non-negative number, and (ii) has the same units as the data. For example, if the
data are distance measurements in meters, the standard deviation will also be measured in meters

4If the distribution of the data set is normal around 70% of the values will be in this interval.

16

CHAPTER 2. MEASUREMENT OF SOFTWARE DESIGN

16 2 Facts on Measurements and Visualization

given metric. Based on the information from Table 2.1 we can state
that a Java method is very long if it has at least 20 LOC, or that a
C++class has few methods if it has between 4 and 9 methods.

Java C++
Metric Low Ave-

rage
High Very

High
Low Ave-

rage
High Very

High

CYCLO/Line of Code 0.16 0.20 0.24 0.36 0.20 0.25 0.30 0.45
LOC/Method 7 10 13 19.5 5 10 16 24
NOM/Class 4 7 10 15 4 9 15 22.5

Table 2.1. Statistical thresholds of 45 Java and 37 C++systems computed
for the size and complexity metrics used in this book.

The thresholds values presented above are relevant for more than
the three metrics themselves; they can be used to derive thresholds
for any metric that can be expressed in terms of these three metrics.

Example. We want to know what a high WMC (Weighted Method
Count) value is for a class written in Java. We use the following def-
inition of WMC [CK94]: the sum of the CYCLO metric [McC76] over
all methods of a class. Thus, WMC can be expressed in terms of the
three metrics as follows:

WMC =
CY CLO

LOC
· LOC

Method
· NOM

Class

To compute a threshold for high WMC means selecting from Ta-
ble 2.1 the high statistical values for the three primary terms from
the formula above and multiplying them. In a similar fashion we can
compute the low, average, high, and very high thresholds for two
other size and complexity metrics used in this book, i.e., LOC/Class
and AMW (Average Method Weight) a.k.a. CYCLO/Method (see Ta-
ble 2.2).

Java C++
Metric Low Ave-

rage
High Very

High
Low Ave-

rage
High Very

High

WMC 5 14 31 47 4 23 72 108
AMW 1.1 2.0 3.1 4.7 1.0 2.5 4.8 7.0
LOC/Class 28 70 130 195 20 90 240 360
NOM/Class 4 7 10 15 4 9 15 23

Table 2.2. Derived thresholds of 45 Java and 37 C++systems computed for
the size and complexity metrics used in this book.

Figure 2.3: Statistical thresholds based on 45 Java and 37 C++ systems computed
for several well-known size and complexity metrics

Example. We want to know what a high WMC (Weighted Method Count) value is for
a class written in Java. We use the following definition of WMC [CK94]: the sum of
the CYCLO metric [McC76] over all methods of a class. Thus, WMC can be expressed
in terms of the three metrics as follows:

WMC =
CY CLO

LOC
· LOC

Method
· NOM

Class

To compute a threshold for high WMC means selecting from Figure 2.3 the high
statistical values for the three primary terms from the formula above and multiply-
ing them. In a similar fashion we can compute the low, average, high, and very
high thresholds for two other size and complexity metrics, i.e., LOC/Class and AMW
(Average Method Weight) a.k.a. CYCLO/Method.

2.5 The Overview Pyramid

The overview of an object-oriented system must necessarily include metrics that re-
flect in a balanced manner three main aspects :

1. Size and complexity.

2. Coupling. The core of the object-oriented paradigm are objects that encapsulate
data and that collaborate at run-time with each other to make the system per-
form its functionalities. We want to know to which extent classes (the creators
of the objects) are coupled with each other.

3. Inheritance. A major asset of object-oriented languages is the ease of code reuse
that is possible by creating classes that inherit functionality from their super-
classes. We want to understand how much the concept of inheritance is used
and how well it is used.

To understand these three aspects we defined in [LM06] the Overview Pyramid5,
which is an integrated, metrics-based means to both describe and characterize the
overall structure of an object-oriented system, by quantifying the aspects of complex-
ity, coupling and usage of inheritance. The basic idea is to put together in one place
the most significant measurements about an object-oriented system, so that an engi-
neer can see and interpret in one shot everything that is needed to get a first impres-
sion about the system. The Overview Pyramid is a graphical template for presenting
(and interpreting) system-level measurements in a unitary manner.

5This section is partially reproduced from [LM06], including all figures. ©Springer-Verlag Berlin
Heidelberg 2006. Used by permission.

17

2.5. THE OVERVIEW PYRAMID

2.5.1 Components of the Overview Pyramid

While Size/Complexity and Coupling characterize every software system, the Inher-
itance aspect is specific for object-oriented software and combines both elements of
coupling (e.g., due to inheritance-specific dependencies) and additional size and com-
plexity elements (e.g., due to type-checked up- and down-casts). Measuring these
three aspects at the system level provides us with a comprehensive characterization
of an entire system. An Overview Pyramid is composed of three parts concerning each
aspect.

Figure 2.4: Size and complexity characterization.

The Left Part: System Size and Complexity The left side of the Overview Pyramid
(Figure 2.4) provides information characterizing the size and complexity of the system.
We need a set of direct metrics (i.e., metrics computed directly from the source code)
to describe a system in simple, absolute terms. The metrics describing the size and
complexity are probably some of the simplest and widely used metrics. They count
the most significant modularity units of an object-oriented system, from the highest
level (i.e., packages or namespaces), down to the lowest level units (i.e., code lines and
independent functionality blocks). For each unit there is one metric in the Overview
Pyramid that measures it. The metrics are placed one per line in a top-down manner,
from a measure for the highest level unit (i.e., Number of Packages (NOP)) down to a
complexity measure counting the number of independent paths in an operation (i.e.,
the cyclomatic complexity (CYCLO) [McC76]. We use the following metrics for the size
and complexity side of the Overview Pyramid:

• Number of Packages (NOP), i.e., the number of high-level packaging mechanisms

• Number of Classes (NOC), i.e., the number of classes defined in the system

• Number of Operations (NOM),i.e., all user-defined operations, including methods
or global functions.

• Lines of Code (LOC), i.e., the lines of all user-defined operations.

• Cyclomatic Number (CYCLO), i.e., the total number of possible program paths
summed from all the operations in the system. It is the sum of the McCabe
cyclomatic number [McC76] for all operations. We use this metric to quantify
the intrinsic functional complexity of the system.

There is nothing new about the numbers above, but let us have a look at the
numbers on the left: there are four computed numbers; we call them computed pro-
portions because they are all computed in a “cascading” manner as ratios between the
direct metrics placed on the right (see Figure 2.4). All these four proportions have two
essential characteristics:

18

CHAPTER 2. MEASUREMENT OF SOFTWARE DESIGN

• Independence. While the direct metrics discussed earlier influence each other
(e.g., a system of 100 classes probably has fewer methods than one of 10,000
classes) these proportions are independent of one another. This makes each
number a distinct characteristic of a specific aspect of code organization at both
the procedural and the object-based level.

• Comparability. Being computed as ratios between absolute values, these propor-
tions allow for easy comparison with other projects, independent of their size.

How are these proportions computed? As depicted in Figure 2.4 each proportion
metric is computed as a ratio between two consecutive numbers, by dividing the lower
number by the next upper one. Thus, for example, the ratio emphasized in the figure
(i.e., the one positioned second lowest in the Overview Pyramid) is computed as a ratio
between the value of LOC (the number on the line below it) and NOM (the number on
the same line). The number denotes the average number of code lines per operation
in the analyzed system. To characterize the size and complexity of a system, based
on the direct metrics used, the following proportions result:

• High-level Structuring (NOC/Package). This proportion provides the reader with
a first impression of the packaging level, i.e., the high-level structuring policy of
the system. In other words, it indicates if packages tend to be coarse grained or
fine grained.

• Class structuring (NOM/Class). This proportion provides a hint about the quality
of class design, because it reveals how operations are distributed among classes.
Very high values might be a sign of missing classes, i.e., an exaggerated stuffing
of operations into classes. In the case of global functions which cannot be at-
tached to any class, we consider them as static methods of a default anonymous
class.

• Operation structuring (LOC/Operation). This is an indication of how well the code
is distributed among operations. Very high numbers suggest the operations in
the system are rather “heavy”. This can be used as a first sign of the how the
system is structured from the point of view of procedural programming.

• Intrinsic operation complexity (CYCLO/Code Line). This last ratio characterizes
how much conditional complexity we are to expect in operations (e.g., 0.2 means
that a new branch is added every five lines).

The Right Part: System Coupling The second part of the Overview Pyramid pro-
vides an overview with information about the level of coupling in the system, by means
of operation invocations. The two direct metrics that we use are:

• Number of Operation Calls (CALLS), i.e., this metric counts the total number of
distinct operation calls (invocations) in the project, by summing the number of
operations called by all the user-defined operations.

• Number of Called Classes (FANOUT), i.e., this is computed as a sum of the
FANOUT [LK94] metric, namely classes from which operations call methods, for
all user-defined operations. This metric provides raw information about how
dispersed operation calls are in classes.

Again, the numbers above describe the total coupling amount of a system, but it
is difficult to use those numbers to characterize a system with respect to coupling.

19

2.5. THE OVERVIEW PYRAMID

We can compute, using the number of operations (NOM), two proportions that better
characterize the coupling of a system.

• Coupling intensity (CALLS/Operation). This proportion denotes the level of col-
laboration (coupling) between the operations, i.e., how many other operations
are called on average from each operation. Very high values suggest that there is
excessive coupling among operations, i.e., a sign that the calling operation does
not “talk” with the right “counterpart”.

• Coupling dispersion (FANOUT/Operation Call). This proportion is an indicator of
how much the coupling involves many classes (e.g., 0.5 means that every two
operation calls involve another class).

Top Part: System Inheritance The top part of the Overview Pyramid is not a ladder
as in the previous cases; it is composed of two metrics that provide an overall charac-
terization of inheritance usage. These proportion metrics reveal how much inheritance
is used in the system, as a first sign of how much object-orientedness (i.e., usage of
class hierarchies and polymorphism) to expect in the system.

The two metrics to characterize the presence and the shape of class hierarchies
are:

1. Average Number of Derived Classes (ANDC), i.e., the average number of direct
subclasses of a class. All classes defined within the measured system (and only
those) are considered. Interfaces (in Java or C#) are not counted. If a class
has no derived classes, then the class participates with a value of 0 to ANDC.
The metric is a first sign of how extensively abstractions are refined by means of
inheritance.

2. Average Hierarchy Height (AHH). The metric is computed as an average of the
Height of the Inheritance Tree (HIT) among the root classes defined within the
system. AHH is the average of the maximum path length from a root to its deep-
est subclasses. A class is a root if it is not derived from another class belonging
to the analyzed system. Interfaces (in Java or C#) are not counted. Standalone
classes (i.e., classes with no base class in the system and no descendants) are
considered root classes with a HIT value of 0. The number tells us how deep the
class hierarchies are. Low numbers suggests a flat class hierarchy structure.

Why did we choose these two proportions and why are they sufficient? They cap-
ture two complementary aspects of a class hierarchy: while ANDC provides us with an
overview of the width of inheritance trees, the AHH metric reveals if class hierarchies
tend to be deep or shallow. The two metrics provide us with first hints on whether we
should expect intensive usage of inheritance relations (ANDC) and, if so, they help us
understand how deep these hierarchies are (AHH).

2.5.2 Interpreting the Overview Pyramid

We have seen that the Overview Pyramid characterizes a system from three different
viewpoints: size and structural complexity; coupling and the usage of the inheritance
relation. The characterization is based on the eight computed proportions displayed
in the Overview Pyramid. All these values have one important property: they are
independent of the size of the system, allowing for an objective assessment. As em-
phasized in Section 2.4 in order to ensure a reasonable level of objectiveness we need
a reference point, other than common sense (which is not enough to interpret the

20

CHAPTER 2. MEASUREMENT OF SOFTWARE DESIGN

numbers). For example, is the 9.42 NOM/Class value in Figure 2.5 normal, too small
or too large? We need a reference point.

Figure 2.5: Using colors to interpret the Overview Pyramid. BLUE means a low value;
GREEN means an average value; RED stands for a high value.

Based on the statistical thresholds described in the previous section (see Sec-
tion 2.4) and using the same statistical base, we computed the low, average and high
thresholds for all the proportions. As mentioned before, these metrics are collected
from a statistical base of 45 Java projects and 37 C++ projects, of various sizes (from
20,000 up to 2,000,000 lines), and various application domains; projects are both
open-source and commercial.

The Size and Complexity side can be interpreted as follows: the operations in the
system have a rather low intrinsic complexity (as 0.15 is closer to the LOW threshold,
which is 0.16), while the size of operations is close to the average value for Java
systems. With 9.42 operations per class, and 20.21 classes per package the system
has rather large classes and packages. On the System Coupling side we learn the
following: the system is intensively coupled in terms of operation calls, but these
calls tend to be rather localized, i.e., functions tend to call many operations from few
classes. In the Class Hierarchies part we read the following: The class hierarchies are
frequent in the system (low ANDC value), and very shallow (low AHH value).

To facilitate the visual interpretation of the Overview Pyramid we associate the
computed proportions with colors that map those numbers to their semantics in
terms of the three types of statistical thresholds (i.e., low, average, high). Thus, we
place a computed proportion in a blue rectangle to show that the value is close to the
low threshold. Similarly, if a value is close to the average threshold it will be placed
in a green rectangle; eventually, if the computed value is close to the high threshold,
the number will be placed in a red rectangle.

21

Chapter 3

Detection of Design Flaws

There is no perfect software design. Like all human activities, the process of designing
software is error prone and object-oriented design makes no exception. The flaws
of the design structure, also known as bad smells or code smells [FBB+99]) have
a strong negative impact on quality attributes such as flexibility or maintainability.
Thus, the identification, detection and correction of these design flaws is essential for
the evaluation and improvement of software quality.

3.1 Problem Statement

Although metrics are essential in controlling the quality of a system, if taken in iso-
lation they cannot serve the goal of controlling design quality [LM06]. Moreover, in
spite of the fact that all major IDEs provide extensive quality assurance modules that
use metrics to control design quality, in the last years it became more and more clear
that there are several major problems when it comes to using metrics in practice
[Mar04]: First, when metrics are used in isolation they are too fine grained to quan-
tify comprehensively one investigated design aspect (e.g., distribution of intelligence
among classes). Thus, in most cases individual measurements do not provide relevant
clues regarding the cause of a problem. In other words, a metric value may indicate
an anomaly in the code but it leaves the engineer mostly clueless concerning the
real cause of the anomaly. Thus, the bottom-up approach i.e., going from abnormal
numbers to the recognition of design flaws is impracticable because the symptoms
captured by single metrics, even if perfectly interpreted, may occur in several flaws:
the interpretation of individual metrics is too fine-grained to indicate a particular de-
sign problem. Second, as a consequence of the previous remark, in practice it is very
hard to correlate an abnormal metric value with a concrete restructuring measure,
that would improve the quality of design.

Beyond the issue of granularity of metrics, there is a second problem: it is impos-
sible to establish an objective and general set of rules that would automatically lead
to high-quality design. However, there is a common understanding of some general,
high-level characteristics of a good design [Pre10]; notably, Coad and Yourdon iden-
tify four essential traits of a good object-oriented design, namely: low coupling, high
cohesion, moderate complexity and proper encapsulation. As a consequence, over
the last two decades, many authors were concerned with identifying and formulating
design principles [M.88] [Lis87] [Mar02c], rules [CY91b] [M.88], and heuristics[Rie96]
[JF88] [Lak96] [LR89] that would help developers fulfill those criteria while designing
their systems.

An alternative approach to disseminating heuristical knowledge about the quality
of the design is to identify and describe the symptoms of bad-design. This approach

23

3.2. DETECTION STRATEGIES: RULES FOR DETECTING DESIGN FLAWS

is used by Fowler in his book on refactorings [FBB+99] and by the “anti-patterns”
community [BMM98] as they try to identify situations when the design must be struc-
turally improved. Fowler describes around twenty code smells – or “bad smells” as
the author calls them – that address symptoms of bad design, often encountered in
real software systems.

In order to detect design flaws, various detection techniques can be used. Some of
these techniques are based on Prolog rules to describe structural anomalies [Ciu99],
while others are metrics-based [Mun05, LM06, Tri08], or use a dedicated specification
language [MGDLM10] that also allows taking into account correlation among flaws. In
this section we present our approach on combining metrics in order to serve the iden-
tification and location of design problems and thus contribute to controlling design
quality.

3.2 Detection Strategies: Rules for Detecting Design Flaws

We emphasized that a metric alone cannot answer all the questions about a system
and therefore metrics must be combined to provide relevant information1. Using a
medical metaphor we might say that the interpretation of abnormal measurements
can offer an understanding of symptoms, but the measurements cannot provide an
understanding of the disease that caused those symptoms. The bottom-up approach,
i.e., going from abnormal numbers to the recognition of design diseases is impracti-
cable because the symptoms captured by single metrics, even if perfectly interpreted,
may occur in several diseases: The interpretation of individual metrics is too fine
grained to indicate the disease. This leaves us with a major gap between the things
that we measure and the things that are in fact important at the design level with
respect to a particular investigation goal.

How should we then combine metrics in order to make them serve our purposes?
The main goal of the mechanism presented below is to provide engineers with a means
to work with metrics at a more abstract level. The mechanism defined for this purpose
is called a detection strategy, and is defined as a composed logical condition, based on
metrics, by which design fragments with specific properties are detected in the source-
code [Mar04, LM06].

The aim with detection strategies is to make design rules, and their violations,
quantifiable, and thus to be able to detect design problems in an object-oriented soft-
ware system, i.e., to find those design fragments that are affected by a particular
design problem.

3.2.1 Defining a Detection Strategy

Starting from the informal description of design flaws [FBB+99, Rie96, BMM98] we
have defined a large set of detection strategies [Mar04, LM06, Tri08]. Each detec-
tion strategy was defined using the Goal-Question-Metric (GQM) methodology [BR94],
which defines a three-level quantification model. The first, conceptual level defines the
measurement goal, which in our case is to detect the presence of a particular design
flaw. On the second level, the goal is refined in form of a set of questions, which in
this particular case capture the specific traits of a design flaw. Finally, each question
is associated with one or more metrics that answer the question in a measurable way.

The use of metrics is based on the mechanisms of filtering and composition, de-
scribed next.

1This section is partially reproduced from [LM06], including all figures. ©Springer-Verlag Berlin
Heidelberg 2006. Used by permission.

24

CHAPTER 3. DETECTION OF DESIGN FLAWS

Filtering The key issue in filtering is to reduce the initial data set so that only those
values that present a special characteristic are retained. A data filter is a boolean
condition by which a subset of data is retained from an initial set of measurement
results, based on the particular focus of the measurement.

The purpose of filtering is to keep only those design fragments that have special
properties captured by the metric. To define a data filter we must define the values
for the bottom and upper limits of the filtered subset. Depending on how we specify
the limit(s) of the resulting data set, filters can be either statistical, based on absolute
thresholds, or based on relative thresholds.

Statistical Filters A first approach when we seek abnormal values in a data set
is to employ statistical means for detecting those values. Thus, the (binary) filtering
condition and its semantics are implicitly contained in the statistical rules that we
use. The advantage of this approach is that it is not necessary to specify explicitly a
threshold value beyond which entities are considered abnormal.

One significant example of a statistical filter is the box-plot technique, which is a
statistical means for detecting the abnormal values (outliers) in a data set [FP96]. In
this case, the detection of outliers starts from the median value, which can be directly
computed from the analyzed data set. Based on this median value, two pairs of
thresholds are computed i.e., the lower/upper quartile and respectively lower/upper
tail. Eventually, in a box-plot an outlier is a value from the data set that is either
higher than the upper tail or lower than the lower tail thresholds.

Threshold-Based Filters The alternative way of defining filters is to pick-up a com-
parator (e.g.,lower than or highest values) and specify explicitly a threshold value (e.g.,
lower than 10 or 5 highest values). But, as already discussed Section 2.4, the selec-
tion of proper thresholds is one of the hardest issues in using metrics. There are two
ways in which these filters can be specified:

1. Absolute Comparators. We use the classical comparators for numbers, i.e., >
(greater than); ≥ (greater than or equal to); < (less than); ≤ (less than or equal to).

2. Relative Comparators. The operators that can be used are highest values and
lowest values. These filters delimit the filtered data set by a parameter that
specifies the number of entities to be retrieved, rather than specifying the max-
imum (or minimum) value allowed in the result set. Thus, the values in the
result set will be relative to the original set of data. The used parameters may be
absolute (e.g., retrieve the 20 entities with the highest LOC values) or percentile
(e.g., retrieve the 10% of all entities having the lowest LOC values). This kind of
filter is useful in contexts where we consider the highest or lowest values from a
given data set, rather than indicating precise thresholds.

Composition In contrast to simple metrics and their interpretation models, a detec-
tion strategy is intended to quantify more complex design rules, that involve multiple
aspects that needed quantification. As a consequence, in addition to the filtering
mechanism that supports the interpretation of individual metric results, we need a
second mechanism to support a correlated interpretation of multiple result sets – this
is the composition mechanism. It is based on a set of AND and OR operators that
compose different metrics together to form a composite rule.

3.2.2 Detection Strategies Exemplified

As mentioned before, detection strategy can be used to express in a quantitative man-
ner deviations from a given set of rules of good design. While it is impossible to

25

3.2. DETECTION STRATEGIES: RULES FOR DETECTING DESIGN FLAWS

establish an objective and general set of such rules that would lead automatically
to high-quality design if they would be applied, yet heuristic knowledge reflects and
preserves the experience and quality goals of the developers.

Let us see now, based on the concrete example of the God Class [Rie96] design flaw,
how design problems can be defined for a concrete design flaw. The entire process is
summarized in Figure 3.1.

The starting point in defining such a detection strategy is given by one (or more)
informal design rules — like those stated by Riel [Rie96], Martin [Mar02c] or Fowler
[FBB+99] — that comprehensively define the design problem that we want to cap-
ture. In this concrete case we start from the three heuristics related to the God Class
problem, as described by Riel [Rie96]:

Top-level classes in a design should share work uniformly. [...]
Beware of classes with much non-communicative behavior. [...]
Beware of classes that access directly data from other classes.

Step 1: Identify Symptoms The first step in constructing a detection strategy is to
break down the informal rules in a correlated set of symptoms (e.g., class inflation,
excessive method complexity, high coupling) that can be captured by a single metric.
In our case the first rule refers to high class complexity. The second rule speaks about
the level of intra-class communication between the methods of the class; thus it refers
to the low cohesion of classes. The third heuristic addresses a special type of coupling,
i.e., the direct access to instance variables defined in other classes. In this case the
symptom is access of foreign data.

Step 2: Select Metrics The second step is to select proper metrics that quantify best
each of the identified properties. In this context the crucial question is: from where
should we take the proper metrics? There are two alternatives:

1. Use well-known metrics from the literature. For example, we could choose a
metric from a well-known metrics suite (e.g., the Chidamber&Kemerer [CK94]
suite), or from the metrics summarized by various authors (e.g., Lorenz and
Kidd [LK94], Henderson-Sellers [HS96], Briand [BDW99a, BDW98] etc.)

2. Define a new metric (or adapt an existing one), so that the metric captures exactly
one of the symptoms (see previous step) that appears in that design flaw that we
intend to quantify.

Our approach is a conservative one, i.e., we try to use as much as possible metrics
from the literature, avoiding thus to define new (oftentimes unnecessary) metrics. Yet,
in the same time we want to emphasize that, in defining a good detection strategy, it
is very important not to sacrifice the exact quantification of a symptom, just for the
sake of using an existing metrics from the literature. In other words, if no adequate
metric can be found in the literature, define a new metric that reflects one symptom
that needs to be quantified.

For the God Class design flaw these properties are class complexity, class cohesion
and access of foreign data. Therefore, we choose the following set of metrics:

• Weighted Method Count (WMC) is the sum of the statical complexity of all meth-
ods in a class [CK94]. We consider McCabe’s cyclomatic complexity metric as a
complexity measure [McC76, LK94].

26

CHAPTER 3. DETECTION OF DESIGN FLAWS

Figure 3.1: Process of transforming an informal design rule in a detection strategy.

27

3.2. DETECTION STRATEGIES: RULES FOR DETECTING DESIGN FLAWS

• Tight Class Cohesion (TCC) is the relative number of methods directly connected
via accesses of attributes [BK95, BDW98].

• Access to Foreign Data (ATFD) represents the number of external classes from
which a given class accesses attributes, directly or via accessor-methods [Mar04].

Notice that while the first two metrics (i.e., WMC and TCC) are metrics defined in
the literature, the last one was defined by us in order to capture a very specific aspect,
i.e., the extent to which a class uses attributes of other classes.

Step 3: Select Filters The next step is to define for each metric the filter that
captures best the symptom that the metric is intended to quantify. As mentioned
earlier, this implies to (i) pick-up a comparator and (ii) to set an adequate threshold.

In our concrete case, the first symptom is referring to excessively high class com-
plexity; therefore we want to find classes that are complexity outliers. Thus, for the
WMC metric we use the ≥ (greater than or equal to) comparator. How do we find
the threshold for extremely high values of the WMC complexity metric? There is no
other way than to base it on statistical data related to complexity, as described in
Section 3.2.1. Based on the semantic labels described there, we can say now that we
will use the very high threshold value.

For capturing the aspect of “access to foreign data” we use the > (greater than)
comparator, whereby the threshold value will be the maximal number of “tolerable”
foreign attributes to be used. Thus, the threshold value for ATFD, does not need to be
based on statistics, because the metric has a precise semantic: It measures the extent
of encapsulation breaking. the accidental usage of foreign data, and consequently a
few such usages are harmless; thus, ATFD > FEW .

Eventually, for the low cohesion symptom we choose the < (less than) comparator.
In order to set the proper threshold, we first have to notice that the values of TCC
are fractions. As this filter must capture non-cohesive classes, we decided to use the
one-third threshold, meaning that only one third of the method pairs of the class have
in common the usage of the same attribute. If we wanted to capture more extreme
cases of non-cohesiveness, we could have used the one-quarter threshold.

Step 4: Compose the Detection Strategy The final step is to correlate these symp-
toms, using the composition operators described previously. From the context of the
informal heuristics as presented by their author in [Rie96], we infer that all these
three symptoms should co-exist if a class is to be considered a behavioral God Class.

Consequently, the detection strategy for God Class can be expressed as follows
[LM06]:

God Class = (WMC > VERY_HIGH) and (ATFD > FEW) and (TCC < ONE_THIRD)

3.2.3 The Issue of Thresholds

The God Class detection rule clearly shows that the most sensitive part of any metrics-
based technique is the selection of concrete threshold values. In [MM05] we defined
a novel method for establishing proper threshold values for detection strategies. The
method is based on inferring the threshold values based on a set of reference exam-
ples, manually classified in flawed respectively healthy design entities (e.g., classes,
methods). More precisely, the tuning machine searches, based on a genetic algorithm,
for those thresholds which maximize the number of correctly classified entities. In the
aforementioned paper we also define a repeatable process for collecting examples, and

28

CHAPTER 3. DETECTION OF DESIGN FLAWS

discuss the encouraging and intriguing results while applying the approach on two
concrete detection strategies that capture two well-known design flaws i.e.,God Class
and Data Class.

3.2.4 Web of Correlated Detection Strategies

As a result of this approach we defined in [LM06] and in other subsequent publica-
tions [Mar12] almost 20 different detection strategies for design flaws ranging from
fine-grained ones that affect methods (e.g., Code Duplication) to architectural flaws
that occur at the level of subsystems (e.g., Cyclic Dependencies [Mar02c]).

Most of the times these design flaws do not appear in isolation. Therefore, when
addressing design flaws we have to take into account also the most common corre-
lations between the various disharmonies. For example, in Figure 3.2, we depict the
web of correlations for the design flaws defined in [LM06]. The correlation enable us
to propose adequate correction plans, like the one described in Section 6.3.

Figure 3.2: Disharmonies and their correlations.

3.3 History-Enriched Detection of Design Flaws

Design flaws are like human diseases — each of them evolves in a special way. Some
diseases are hereditary, others are gained during the life-time. The hereditary dis-
eases are there since we were born. If the physicians are given a history of our health
status over time they can give the diagnostic in a more precise way. Moreover there
are diseases with which our organism is accustomed/immune and thus represent no
danger for our health and we don’t even consider them to be diseases any more.

29

3.3. HISTORY-ENRICHED DETECTION OF DESIGN FLAWS

3.3.1 Refining Detection Rules

In [RDGM04] we propose an approach in which we use information about the evolu-
tion of a system to increase the accuracy of design flaws detection. We analyze the
history of the suspects to see whether the flaw caused problems in the past. If in
the past the flaw proved not to be harmful then it is less dangerous. For example, in
many cases, the generated code needs no maintenance so the system which incorpo-
rates it can live a long and serene life no matter how the generated code appear in the
sources (e.g., large classes or unreadable code).

Figure 3.3: Examples of the computation of STAB and PERS

We refine the detection of design flaws by taking into consideration how stable the
suspects were in the past and how long they have been suspected of being flawed
(persistency). For each of these two aspects we define a metric, applied on a class
history (see Figure 3.3):

• STAB is the stability metric, and it is defined as the number of versions in which
a class was changed over the total number of versions. In this context a change
is defined between two consecutive versions as an increase or decrease of the
number of methods of a class.

• PERS is the persistency metric, and it is defined as the relative number (per-
centage) of versions in which the measured class was affected by a given design
flaw.

By taking into account this historical information, we have now two ways of refin-
ing the God Class detection strategy (see Section 3.2): Stable God Class and Persistent
God Class.

Stable God Classes can be detected as follows

Stable God Class = (God Class) and (Stab > 95%)

As we know God Classes are big and complex classes which encapsulate a great
amount of system’s knowledge. They are known to be a source of maintainability
problems. However, not all God Classes raise problems for maintainers. The sta-
ble God Classes are a benign part of the God Class suspects because the system’s

30

CHAPTER 3. DETECTION OF DESIGN FLAWS

evolution was not disturbed by their presence. For example, we found cases where
they implemented a complex yet very well delimitated part of the system containing
a strongly cohesive group of features (e.g., an interface with a library). On the other
hand, the changes of a system are driven by changes in its features. Whenever a class
implements more features it is more likely to be changed. God Classes with a low sta-
bility were modified many times during their lifetime. Therefore, we can identify God
Classes which raised maintenance problems during their life from the set of all God
Classes identified within the system. The unstable God Classes malign sub-set of God
Class suspects.

Persistent God Classes The persistent God Class are those classes which have been
suspects for almost their entire life. Particularizing the reasons given above for per-
sistent suspects in general, a class is usually born God Class because one of the
following reasons:

1. It encapsulates some of the essential complexities of the modeled system. For
example, it can address performance problems related to delegation or it can
belong to a generated part of the system.

2. It is the result of a bad design because of the procedural way of regarding data
and functionality there being an emphasis on the functional decomposition in-
stead of data centric decomposition.

Persistent God Classes can be detected as follows

Persistent God Class = (God Class) and (Pers[GodClass] > 95%)

It is obvious that God Classes which are problematic belong only to the last cat-
egory because in the first category the design problem can not be eliminated. God
Class suspects which are not persistent, obtained the God Class status during their
lifetime. We argue that Persistent God Classes are less dangerous than those which
are not persistent. The former were designed to be large and important classes from
the very beginning and thus are not so dangerous. The later more likely occur due
to the accumulation of accidental complexity resulted from the repeated changes of
requirements and they degrade the structure of the system.

3.3.2 Detecting History-Specific Flaws

Software systems need to change over time to cope with the new requirements. How-
ever, as requirements happen to crosscut the system’s structure, changes will have
to be made in multiple places. Research has been carried out to detect and inter-
pret groups of software entities that change together. These co-change relationships
have been used for different purposes: to identify hidden architectural dependencies
[GHJ98], to point developers to possible places that need change [ZWDZ04], or to use
them as change predictors [HH04].

The detection is mostly based on mining versioning systems like CVS and in identi-
fying pairs of changed entities. Entities are usually files and the change is determined
through observing additions or deletions of lines of code. Also, changes are interpreted
between pairs of entities. In [GDK+07] we proposed a different approach, focused on
identifying patterns of change that affect several entities in the same time. For this
we use formal concept analysis [GW99], which is a technique that identifies sets of
elements with common properties based on a given matrix that specifies the elements
on the rows, properties on columns and the value of a field (i, j) is marked as true if
the element i has property j.

31

3.3. HISTORY-ENRICHED DETECTION OF DESIGN FLAWS

To identify how entities changed in the same way, we use historical measurements
to detect changes between two versions. For each history we identity each version
in which a certain change condition is met. To use formal concept analysis, we use
histories as elements, and “changed in version j” represents the jth property of the
element. Furthermore, for building the matrix of changes, we make use of logical
expressions which combine properties with thresholds and which run on two versions
of the system to detect interesting entities. In this way, we can detect changes that
take into account several properties.

This technique enabled the detection of new types of design flaws, that could not
be detected otherwise. For example, Shotgun Surgery is a flaw that is indicated by
the fact that every time we have to change a class, we also have to change a number
of other classes [FBB+99]. We would suspect a group of classes of such a bad smell,
when they repeatedly keep their external behavior constant and change the imple-
mentation. We can detect this kind of change in a class in the versions in which the
number of methods did not change, while the number of statements changed. An-
other design flaw detected by using this technique is Parallel Inheritance i.e., classes
which change their number of derived classes together [FBB+99]. Such a character-
istic is not necessary a bad smell, but gives indications of a hidden link between two
hierarchies. For example, if we detect a main hierarchy and a test hierarchy as being
parallel, it gives us indication that the tests were developed in parallel with the code.

Figure 3.4: Example of applying formal concept analysis to group class histories based
on the changes in number of methods. The Evolution Matrix on the left forms the
incidence table where the property Pi of element X is given by “history X changed in
version i.”

We depict in Figure 3.4 an exemplification of the approach. To the left, instead
of a table, we use the notation of an Evolution Matrix [13] in which each square
represents a class version and the number inside a square represents the number
of methods in that particular class version. A grayed square shows a change in the
number of methods of a class version as compared with the previous version. We
use the matrix as an incidence table, where the histories are the elements and the
properties are given by “changed in version j”. Based on such a matrix we can build a
concept lattice. To the right side of figure we show the concept lattice obtained from
the Evolution Matrix on the left. Each concept in the lattice represents all the class

32

CHAPTER 3. DETECTION OF DESIGN FLAWS

histories which changed certain properties together in those particular versions. In
the given example, class history A and D changed their number of methods in version
2 and version 6.

To identify a change we want to be able to take into account several properties,
and not only one. For example, to detect Parallel Inheritances it is enough to just
look at the number of children of classes; but, when we want to look for classes
which need to change the internals of the methods in the same time without adding
any new functionality, we need to look for classes which change their size, but not
the number of methods. We encode this change detection in expressions consisting
of logical combination of historical measurements. These expressions are applied at
every version. In the example from Figure 2, we used as expression Ei(NOM) > 0 and
we applied it on class histories.

We have started to apply this approach on several case studies (JBoss and Ar-
goUML) and the initial results have proven the feasibility of the approach.

3.4 Detection of Duplicated Code

The detection of code duplication plays an essential role in the assessment and im-
provement of a design. But detected clones might not be relevant if they are too small
or if they are analyzed in isolation. In this context, the goal of this detection strategy is
to capture those portions of code that contain a significant amount of duplication. In
our view a case of duplication is considered significant if: (i) it is the largest possible
chain of duplication that can be formed in that portion of code, by uniting all islands
of exact clones that are close enough to each other and (ii) it is large enough.

In practice, duplications are rarely the result of pure copy–paste actions, but
rather of copy–paste–adapt “mutations”. These slight modifications tend to scatter
a monolithic copied block into small fragments of duplicated code. The smaller such
a fragment is, the lower the refactoring potential, since the analysis becomes harder,
and the granted importance is decreased, too.

For example, imagine we found two operations that have five identical lines, fol-
lowed by one line that is different, which is followed by another four identical lines.
Did we find two clones (of five and four lines) or one single clone spread over ten lines
(5 + 1 + 4 lines)? In such cases, it is almost always better to choose the second option.

In order to address this situation in [WM05] and [LM06] we proposed a novel,
automated approach for recovering duplication blocks, by composing small isolated
fragments of duplication into larger and more relevant duplication chains. Using a
metaphor, our approach is similar to an archeologist that finds the ruins of an ancient
village and will try to put all the pieces together for a better comprehension of the
whole picture, rather than analyzing each artifact separately. In a similar manner, we
try to recover a close representation of a duplicated block, before making decisions of
refactoring that code.

The approach is based three low-level duplication metrics (see Figure 3.5):

1. Size of Exact Clone (SEC). An exact clone is a group of consecutive line-pairs
that are detected as duplicated. Consequently, the Size of Exact Clone metric
measures the size of a clone in terms of lines of code. The size of a clone is
relevant, because in most of the cases our interest in a piece of duplicated code
is proportional to its size.

2. Line Bias (LB). When comparing two pieces of code we usually find more than one
exact clone. In this context, Line Bias is the distance between two consecutive
exact clones, i.e., the number of non-matching lines of code between two exact

33

3.4. DETECTION OF DUPLICATED CODE

Figure 3.5: Metrics involved in detecting a duplication chain

clones. The LB value may allow us to decide if two exact clones belong to the
same cluster of duplicated lines (e.g., the gap between the two exact clones could
be a modified portion of code within a duplicated block of code).

3. Size of Duplication Chain (SDC). To improve the code we need to see more than
just a pile of small duplication chunks. We want to see the big picture, i.e., to
cluster the chunks of duplication into a more meaningful block of duplication.
This is what we call a duplication chain. Thus, a duplication chain is composed
of a number of smaller islands of exact clones that are close enough pairwise
to be considered as belonging together, i.e., their LB value is less than a given
threshold.

Now, with these metrics in mind we can revisit the example mentioned earlier in
this section, with two functions having two exact clones. In terms of the low-level
duplication metrics introduced in this section, we can now say that the first clone has
a SEC value of 5, while the second one has a SEC value of 4. Between the two clones
there is a gap of one line; thus, the LB value is 1. Consequently the SDC metric has
a value of 10 lines (5 + 1 + 4 lines).

These three metrics can have a major influence on the detection process and re-
sults. Taking the example depicted as as scatterplot in Figure 3.5, let us assume that
we are interested in duplications chains with SDC over 4 LOC and a maximum LB of
2. If we would set the minimum SEC to 3, then the first exact chunk starting from the
upper-left corner would be overlooked because of that. Then the second exact chunk
of length 3, because of the maximum LB of 2 will not be able to find a next exact
chunk in its vicinity and it will also be missed because of the minimum SDC of 4. In
this case, we would miss all the duplication information in this area. But if we would
set a minimum SEC of 2, the first and second exact chunks will be merged because
the LB between them is 2, which is acceptable for our example (maximum LB = 2).
The chain would end here, because the next exact chunk is located at a distance of
3. However, the duplication chain has a length of 6, which qualifies it as a significant
du- plication chain for the given parameters.

By performing various experiments we can draw the following conclusions:

• By using our approach we detect more clones (75% more,in this experiment) that
a usual line-based clone detector.

34

CHAPTER 3. DETECTION OF DESIGN FLAWS

• Some of these extra duplication chains are valuable results and can lead to
refactorings.

• The recall of our approach is 89% under the strict conditions of the experiment
described in [Bel02], but in a more loose context the recall could rise up to 95%.

3.5 Verification of Architectural Constraints

The size and complexity of software systems is constantly and abruptly increasing, as
well as the size of the teams who develop them. Although software systems usually
start with a clean design and an unitary architecture, preserving the design quality in
the final product, especially its modularity and reusability, depends on the program-
mers’ ability to understand, implement and maintain the initial architecture of the
system. In other words, it depends on the ability to preserve a common vision about
the high-level design i.e., to preserve the architectural integrity.

This is an essential problem, and it has led to a number of approaches that help
maintaining architectural integrity by allowing for the specification and checking of
architectural rules (constraints) in code. Unfortunately, these approaches are rarely
used in practice because of their excessive complexity, lack of flexibility and absence
of integration with the actual development environment. In [MG10] we propose a
new, agile approach to defining and checking architectural constraints. The proposed
solution consists, on one hand, of the INCODE.RULES language that offers a highly
intuitive, yet flexible, means for defining architectural rules. On the other hand,
INCODE.RULES is far more than a language specification: architectural rules can be
automatically checked using the inCode.Rules interpreter, they can be easily edited
using the full-fledged editor that we created. Both the interpreter and the editor
are tightly integrated in the Eclipse IDE. Furthermore, INCODE.RULES has grown
beyond being just a prototype as it has been already successfully applied on large-
scale systems of over 1 MLOC. Thus, INCODE.RULES provides a more agile approach
to architecture verification, as it brings the evolution of code and architecture closer
than ever before.

INCODE.RULES supports two different sets of rules: (i) usage rules and (ii) property
rules.

Usage rules. This category of rules are meant to provide the designer the ability to
break-down the system into components, or modules, as well as to specify the usage
relationships between the components. The beauty of this rule type is that one can
define components that overlap, thus allowing the designer to specify more than one
modularization view of the same system.

For instance, we might want to specify that neither calls nor accesses are made
from package named a.b to package named x.y. This can be specified as follows in
INCODE.RULES:

Listing 3.1: Composed Action Rule

package named "a.b" must not (call or access)
package named "x.y";

Property rules have another role: they allow the designer to enforce rules using
filters and properties that are already defined in INCODE (see Section 5.3). In contrast
to a usage rules, a property rule is asymmetric: it consists only of a subject and an

35

3.5. VERIFICATION OF ARCHITECTURAL CONSTRAINTS

action. While the subject is specified exactly as in usage rules, the action is specified
differently, namely by the have keyword. Below is an example of a property rule stating
that the system is not allowed to contain any classes that have the Data Class design
flaw, namely classes that are “dumb” data holders without complex functionality, on
which other classes strongly rely in terms of data-access [LM06]:

Listing 3.2: A Simple Property Rule

classes must not have "Data Class";

As mentioned before, these properties (e.g., “Data Class”) are made available to
inCode.Rules by the underlying software analysis infrastructure (i.e., inCode). Prop-
erties are expressed as property strings and they correspond to a continuously growing
set of quality assessment analyses defined in inCode. This means that inCode.Rules
is also continuously enriching its vocabulary as it may use any of those externally
available quality properties.

Furthermore, properties can be composed using the or and and composition op-
erators, which consequently allows us to write more complex property rules like in the
following example:

Listing 3.3: Composed Filter

classes must not have
("Data Class" or "God Class");

Exceptions. Change is an intrinsic property of software, and it would be foolish
to think that a set of design decisions (let alone rules) will be valid and respected
throughout the entire lifecycle of the system. This is the main reason why the
inCode.Rules language supports the concept of exceptions. There is also a second
reason for introducing exceptions: these language constructs increase the expressiv-
ity of the language, increasing thus their readability. For instance, consider a package
org.x with four classes A, B, C and D. The design states that package org.x is not
allowed to use package org.y except for class D. If exceptions did not exist we would
have to write three rules to code the design, one for each class except class D. With
exceptions we only need to write one rule and one exception.

Exceptions are an optional part of a rule and they appear after the rule definition.
For example :

Listing 3.4: Exception

package named "org.x" must not use package named "org.y"
except {

class named "org.x.ThisClass"
may use class named "org.y.ThatClass"

};

In conclusion, INCODE.RULES is an ADL that provides three main advantage:

1. Simplicity – as it is easy to write (and re-write) rules, not only by trained archi-
tects, but also for any developer. The language does not have a steep learning
curve, as constraints are expressed in a way close to natural language. There-
fore, it can serve not only as an input for the automatic checking of the architec-
tural rules, but also as a proper architecture documentation.

36

CHAPTER 3. DETECTION OF DESIGN FLAWS

2. Flexibility – as it supports the specification of architectural rules at various gran-
ularity levels (i.e., it is possible to write rules both in terms of ”packages” as well
as in terms of ”classes” and ”methods”. Furthermore, the language has flexibility
not only in terms of the involved entities, but also in terms of the granularity at
which relations can be defined.

3. Integration – as it is implemented as an Eclipse plugin, and thus is part of the
Eclipse ecosystem, probably the most widely used environment for Java devel-
opment. Thus, its implementation and tool support (editor, interpreter, rule
checker etc) are tightly integrated with the IDE itself.

37

Chapter 4

Assessment of Design Quality

We measure because we want to assess and eventually improve the design quality of
systems. Actually, our goals is to bridge the gap between how quality is perceived and
how it is assessed internally through measurements at the design level. Without an
assessment of product quality, speed of production is meaningless. This observation
has led software engineers to develop models of quality whose measurements can be
combined with those of productivity. Using detection strategies to raise the abstrac-
tion level in detecting design flaws is a significant step forward. However, for a global
assessment one needs more than just a list of design flaw instances. In this context,
quality models are needed for getting an overall assessment of design quality.

4.1 Problem Statement

The idea of aggregating basic quality indicators into a quality model is not new. The
literature proposes a large number of quality models [Dro95, KLPN97, SBL01, BD02,
DSP+07] all based on the Factor-Criteria-Metric (FCM) de-compositional approach in-
troduced by McCall [MRW76] and Boehm [BBK+78]. FCM models describe complex
quality aspects by breaking them down into more manageable criteria.

More recently, several European projects tried to address the issues of quality
assessment by proposing new models, techniques and tools, namely:

• QualOSS [Con09b] proposes to build a methodology and the associated tools to
benchmark the quality of open source software in order to assist companies in
their strategic decision to integrate F/OSS. While the methodology developed in
the project is valuable asset in evaluating maintainability, it is very much limited
to the specificities of F/OSS software, which are very hard to be extended to non-
F/OSS software.

• SQO-OSS [Con09c] aimed to implement a software quality-checking system that
can be used by F/OSS software projects to gather information about the quality
of their code and relate this information to other data sources such as issue-
tracker, data and mailing-list archives. The most valuable result of this project
is the resulting plugin-based platform for software quality analysis (Alitheia);
however, the project could not provide a sufficiently solid validation of the effi-
ciency and accuracy of the quality model for assessing maintainability.

• FLOSSMETRICS [Con09a] pursued a very ambitious and worthwhile goal, namely
to construct, publish and analyze a large-scale database with information and
metrics about F/OSS software development coming from several thousands of
software projects, using existing methodologies, and tools already developed.

39

4.2. FACTORY-STRATEGY QUALITY MODEL

However, the source-code metrics collected have been rather simple metrics that
do not evenly cover all design aspects, which are relevant in the context of a
quality assessment

Unfortunately both the initial models and the more recent quality models proposed
to assess maintainability have failed so far to establish a widely acceptable basis for
quality assessment. We believe that one of the major problems with FCM models is the
unclear decomposition criterion that leads to a “somewhat arbitrary selection of char-
acteristics” [KP96]. Moreover, if the model is a fixed one, it will be hard to understand,
as the quality principles that dictate the mappings remain implicit [MR04].

A notable attempt to create a widely acceptable basis has been the definition of
the ISO 9126 standard [ISO91]. However, in spite of the rigorous definitions provided
for the various quality factors and criteria, this standard – in fact, any standard –
fails to properly address an essential problem, namely the model’s operationalization.
Thus, quality models are not very useful as long as they remain on a high level of
abstraction, with no concrete quantifications and/or adequate tool support to conduct
quality evaluations.

In conclusion, there are two major problems with current quality models:

1. There is a large gap between design principles and design metrics. Thus, there
is still an important gap between what we measure and what is important in
design.

2. There is a lack of relevant feedback link in quality models. We apply metrics we
identify suspects, but the metric by itself does not provide enough information
for a transforming the code so that it would improve quality. For example, what
about a method with more than 1200 LOC? Should it be split, or could a part
of it be factored out in a base-class, or should the method (or a part of it) be
moved to another class? If the metric is considered in isolation it is hard to
say. Thus, the developer is provided only with the problem and he or she must
still empirically find the real cause and eventually look for a way to improve the
design.

4.2 Factory-Strategy Quality Model

In [MR04] we propose a novel approach to the issue of quantifying the impact of
object-oriented design on the high-level quality factors of software, like maintainabil-
ity or portability. In order to bridge the gap between qualitative and quantitative
statements relate to object-oriented design we propose a quality model that has two
major characteristics:

• an easy and intuitive construction;

• a direct link at the design level to the cause(s) and location(s) of quality problems.

We are aware of the fact that high-level quality factors are influenced also by other
criteria (e.g., technologies involved, selection of algorithms or database schemas) than
the design structure. Because of that, we focus our attention consciously on those as-
pects of quality that are heavily impacted by design problems, especially on maintain-
ability. We would also like to emphasize that the approach is language-independent,
while the toolkit proposed for automation currently supports the JAVA and C++ lan-
guages.

40

CHAPTER 4. ASSESSMENT OF DESIGN QUALITY

4.2.1 Limitations of Factor-Criteria-Metrics Models

As mentioned in the beginning, Factor-Criteria-Metrics (FCM) models are constructed
in a tree-like fashion, where the upper branches hold important high-level quality
factors related to software products, such as reliability and maintainability, which we
would like to quantify. Each quality factor is composed of lower-level criteria, such
as structuredness and conciseness. These criteria are easier to understand and mea-
sure than the factors themselves, thus actual metrics are proposed for them. The tree
describes the relationships between factors and criteria, so we can measure the fac-
tors in terms of the dependent criteria measures (e.g., structurednes can be associated
with a measure of class cohesion, one measuring the complexity of methods, and a
third one measuring the coupling to other classes). This notion of divide-and-conquer
has been implemented as a standard approach to measuring software quality [ISO91].

Although this approach is cited throughout the whole software engineering litera-
ture and is implemented in several commercial CASE tools it has two main drawbacks
that limit its usability.

Drawback 1: Obscure mapping of quality criteria onto metrics. When analyzing
different FCM models the first question that pops-up is: how are the quality criteria
mapped to metrics? The answer to this question is essential because it affects the
usability and reliability of the whole model. In the FCM approach this explicit mapping
between quality criteria on one hand and rules and principles of design and coding
on the other hand implicitly (and obscurely) contained in the mapping between the
quality criteria and the quality metrics. Thus, the answer to the previous question
is: quality criteria are mapped into metrics based on a set of rules and practices of
good-design. But this mapping is “hidden” behind the arrows that link the quality
criteria to the metrics, making it in most of the cases impossible to trace back. This
observation reveals a first important drawback of the FCM quality models: if the model
is a fixed one, it will be hard to understand, because we can only guess what are the
rules and principles that dictated the mapping. In case of a “user-defined” model, the
model is hard to define because when we mentally model quality we reason in terms
of explicit design rules and heuristics, keeping the quality criteria implicitly contained
in the rules.

Drawback 2: Poor capacity to map quality problems to causes. The interpreta-
tion of a quality model, must be done in terms of: diagnosis i.e., what are the design
problems that affect the quality of my software?, location i.e., where are the problems
located in the code? and treatment i.e., what should be changed at the design level, to
improve the quality?

When analyzing a software system using a FCM model, we get the quality status
for the different factors that we are interested in (e.g., the maintainability is quite
poor, while portability stays at a fair level). We are also able to identify a set of design
fragments that are supposed to be responsible for a poor status of a certain quality
factor. Thus, FCM solves both the diagnosis and the location issues. But as soon as
we arrive at the question concerning the treatment, we reached the limits of the FCM
model, because the model doesn’t help us find the real causes of the quality flaws
detected by it. The cause of this is the fact that abnormal metric values – even if
the metrics are provided with a proper interpretation model – are just symptoms of a
design or implementation disease and not the disease itself. A treatment can only be
imagined when knowing the disease not only a set of symptoms.

41

4.2. FACTORY-STRATEGY QUALITY MODEL

Figure 4.1: Factor-Strategy model: the Construction Principle. The acronyms that
appear in the ovals on the right side represent metrics, and the arrows show which
metric appears in which detection strategy (rectangles). The concrete metrics are not
relevant for the understanding of this picture

4.2.2 Factor-Strategy Model: Construction Principle

Based on the detection strategy mechanism we proposed in [MR04] a new type of
quality model, called Factor-Strategy(FS). This approach is intended to improve the
FCM paradigm with respect to the two major drawbacks discussed in the previous
section.

In Figure 4.1 we illustrate the concept of a Factor-Strategy model. FS models
still use a decompositional approach, but after decomposing quality in factors, these
factors are not anymore associated directly with a “bunch” of numbers, which proved
to be of a low relevance for an engineer. Instead, quality factors are now expressed
and evaluated in terms of detection strategies, which are the quantified expressions
of the good-style design rules for the object-oriented paradigm.

Therefore we may state in more abstract terms that in a Factor-Strategy model,
quality is expressed in terms of principles, rules and guidelines of a programming
paradigm. The set of detection strategies defined in the context of a FS quality model
encapsulate therefore the knowledge-box of good design for the given paradigm. The
larger the knowledge-box, the more accurate the quality assessment is. In our case
the detection strategies are defined for the object-oriented paradigm, and thus in the
right side of Figure 4.1 we depicted a sample of a knowledge-box of object-oriented de-
sign. The knowledge-box, as such, is indispensable for any quality model. Although
not visible at first sight, it is also present in the FCM models. The knowledge-box is
not obvious in the FCM approach because of its implicit character, while it becomes
explicit in the FS model.

42

CHAPTER 4. ASSESSMENT OF DESIGN QUALITY

4.2.3 Stepwise Construction Methodology

The main issue in constructing any type of quality model is how to build the asso-
ciation between the higher and the lower levels of the model e.g., in building a FCM
model we are concerned with associating the quality factors with the proper criterion,
or how to choose the metrics for a given criterion. As the Factor-Strategy models are
also based on a decompositional approach the association is still the relevant issue.
Based on the previous considerations, we identify two distinct aspects on this matter
of association: a semantical and a computational aspect.

• The semantical aspect must sustain the validity of choosing a particular decom-
position for a higher-level element into lower-level ones. In other words, it must
explain the rationale behind the association i.e.,why and how do we choose a
particular decomposition for a higher-level element of the model?

• The computational aspect must tackle the issue of quantifying the association
i.e., how the quality score for the higher-level element is to be computed from
the quality scores of the lower-level elements associated with it.

Obviously, we must first define an association that “stands” semantically, and only
then the focus must be set to finding the association formula that quantifies it. The
association formula must reflect the participation level of each lower-level element
within the higher-level aspect of quality. In constructing a Factor-Strategy model
there are two association that must be done: the decomposition of the quality goal in
quality factors and the association between these factors and detection strategies that
can detect design flaws that affect the given quality factor.

Decomposition of the Quality Goal in Factors. There are two possible approaches
to address the semantical aspect of the association between a quality goal and a set
of quality factors: we can either rely on a predefined decomposition found in the
literature or go for a user-defined one. The former option has the advantage of a
wider acceptance, while the latter is more flexible and adaptable to the particular
investigation needs. We rely on an existing and widely accepted decomposition i.e.,
the one found in the ISO9126 standard [ISO91]. For the general case we recommend
using a hybrid solution: start from a predefined decomposition found in the literature
that comes closest to your ideal model and then slightly customize it until it matches
your perspective on quality.

This association is orthogonal to the programming paradigm used for the design
and implementation of the system. The decompositions found in literature, in spite of
many differences, keep the higher level of quality decomposition abstract enough to
make it independent of the development paradigm. As a consequence, in a FS model
the decomposition of a quality goal in factors is not different in any aspect to that
found in the FCM approach. Therefore, the computational aspect of this association
does not raise additional discussions at the conceptual level.

Association of Factors with Detection Strategies Detection strategies used in FS
models capture deviations of a design from design rules and guidelines. In [Mar04]
we have described in detail the process of transforming informal design rules into
detection strategies. The process of identifying the metrics needed to a quantify a
given rule and the way the metrics are correlated to capture that precise aspect is
done very much like in the Goal-Question-Metric approach [BR88]. The authors of
such good-design rules implicitly or explicitly relate them to quality factors [Rie96,

43

4.2. FACTORY-STRATEGY QUALITY MODEL

Mar02c, FBB+99], or to abstract design principles [M.88] (e.g., abstraction, modular-
ity, simplicity) that can be easily mapped to quality factors. Therefore, the semantical
aspect of the association between quality factors and detection strategies becomes
self-evident in the FS approach. This is one of the main advantages of the FS mod-
els over the FCM approach, where the correspondent association is subject to severe
drawbacks. There are two actions related to the computational aspect of the associa-
tion between factors and their set of strategies:

1. Compute a quality score for each detection strategy. We have defined two mech-
anisms for computing a quality score from the results of a detection strategy:
first, a formula to compute the raw-score must be established (i.e., based on
the number of suspects); second, we need a matrix of ranks based on which the
computed raw-score is transformed into a quality score, like a school grade. In
other words, using this matrix we place the raw-score in the context of quality
i.e., the matrix of ranks tells us how good or bad a raw-score is with respect to
the quality factor.

2. Compute a quality score for the quality factor. This score is also computed based
on an algorithm that again involves two mechanisms: first, an association for-
mula in which the operands are the quality scores computed for the strategies;
second, a matrix of ranks that transforms the raw-score for the quality factor
into a quality score.

4.2.4 A Factor-Strategy Model for Maintainability

The quality model that we are going to present below raises no claim of completeness.
Moreover, we believe that a complete and universally acceptable quality model is im-
possible to define at least because of the following reasons: (i) there is no objective
argument for adding or removing a component from the model; (ii) the knowledge-box
used in the model – i.e., the detection strategies defined for the model – is limited and
we see no possibility of claiming completeness in this aspect. This concrete model
illustrates the steps and mechanisms involved in the construction of a FS quality
model. Thus, it will illustrate how metrics are encapsulated in detection strategies
and how quality factors are associated with these strategies that quantify deviations
from good design rules.

For describing FS quality models, we defined a simple description language, called
QMDL (Quality Models Description Language). The decision to define QMDL as a
variant of a description language used in connection with FCM quality models was
deliberate, as we believe that this would simplify the understanding of both the com-
monalities and the differences between the FCM and the FS approach.

Decomposing Maintainability in Quality Factors In conformity with the ISO-9126
standard [ISO91] maintainability is decomposed in four factors: analysability, change-
ability, stability and testability. Because we want to weight equally the four factors
in the evaluation of maintainability, we will use the average value of the scores com-
puted for each quality factor. The association formula for maintainability is expressed
as follows:

Listing 4.1: Maintainability Balanced

Maintainability := avg(Changeability, Testability,
Analysability, Stability)

44

CHAPTER 4. ASSESSMENT OF DESIGN QUALITY

Obviously, any other mathematical formula might have been used depending on
the special emphasis of the quality evaluation. For example, if the emphasis would
have been on the analysability aspect of maintainability, the previous formula could
have been replaced by an weighted average:

Listing 4.2: Maintainability Weighted

Maintainability := (Changeability + Testability +
3*Analysability + Stability) /6

Associating Factors with Detection Strategies We briefly illustrate the process of
association between a factor and a set of strategies using the Stability factor, which is
in this model an aspect of maintainability. Stability is defined in ISO 9126 [ISO91] as
the “attributes of software that bear on the risk of unexpected effect of modifications”.
In conformity with the definitions of the design flaws that are detectable using the
current set of detection strategies, and based on their impact on the desirable design
properties we have selected the strategies associated with five of these flaws i.e., those
that affect directly stability. These are: God Classes, Shotgun Surgery, Data Classes,
God Method and Lack Of State [Mar02b]. After the semantical association between the
Stability factor and the strategies, we focus on the computational aspect, using the
following sequence of steps:

• Step 1: Choose a formula for computing the raw-score for each strategy. In our
case we have used for all the strategies the simplest formula, i.e., the raw score
is the number of suspects detected by that strategy.

• Step 2: Choose an adequate matrix of ranks for each strategy. We used three
levels of tolerance in ranking the raw-scores for the strategies, and consequently
we defined three matrices: a severe one (SevereScoring), a permissive one (Tol-
erantScoring) and one in between the two (MediumScoring). For the design flaws
that in our view had the highest impact on stability we applied the SevereScoring
matrix of ranks.

• Step 3: Define a formula for computing the raw score for the factor. Because
we intended to weight equally the five strategies when computing a score for
stability, we used average function(avg). Throughout the model we applied the
same function for computing the raw-scores for quality factors.

• Step 4:Choose the matrix of ranks for computing the quality score for the factor.
The raw-score computed during the previous step must also be placed in a matrix
of ranks in order to retrieve a normalized quality score.

For example, we believe the design flaws that affect stability in the highest de-
gree are ShotgunSurgery and God Classes. Thus, while for the other design flaws we
used the MediumScoring matrix, for the aforementioned two flaws we computed their
quality score using the SevereScoring matrix, which is defined as follows:

Listing 4.3: Severe Scoring Matrix

SevereScoring {
0 0 10, /* EXCELLENT */
1 1 9, /* VERY GOOD */
2 4 7, /* GOOD */
5 7 5, /* ACCEPTABLE */
8 +oo 3 /* POOR */

},

45

4.2. FACTORY-STRATEGY QUALITY MODEL

Note that any matrix of ranks has three columns: the first two columns define
the range (upper and lower limits) of the raw score, while the last column is the
“grade”. We chose a score (ranks) scale with the two limits being 1 (worst) and 10
(best) that corresponds to that range. In order to enhance our school-based intuitive
understanding of the quality scores. Of course, this “intuition aid” has only a regional
applicability; yet, the idea that stays behind the scale selection is reusable. . For
example, the third line of the previous matrix is interpreted as follows: we grant a
7 mark for a system that has between 2 and 4 classes affected by the design flaw
to which the matrix is attached (in this case ShotgunSurgery and GodClasses). The
number of lines of such a matrix is dependent on the engineer who defines the model,
and it could any value higher than 2 (i.e., differentiate only between good and bad).
Yet, we believe that in practice the number should not exceed 5.

Having reached the last step, we can now “reveal” how Stability is quantified (in
QMDL):

Listing 4.4: Stability

Stability := avg(ShotgunSurgery(SevereScoring),
GodClasses(SevereScoring),
DataClasses(MediumScoring),
GodMethod(MediumScoring),
LackOfState(MediumScoring)

{
9 10 10, /* EXCELLENT */
7 9 8, /* GOOD */
5 7 6, /* ACCEPTABLE */
0 5 4 /* POOR */

};

The Factor-Strategy approach shows that the gap between qualitative and quanti-
tative statements, concerning object-oriented software design can be bridged. While
we used detection strategies as a higher-level mechanism for measurement interpreta-
tion, the FS quality model provides a goal-driven approach for applying the detection
strategies for quality assessment.

The Factor-Strategy approach has two major improvements over the traditional
approaches:

1. The construction of the quality model is easier because the quality of the design
is naturally and explicitly linked to the principles and good-style rules of object-
oriented design. Our approach is in contrast with the classical Factor-Criteria-
Metric approach, where in spite of the decomposition of external quality factors
into measurable criteria, quality is eventually linked to metrics in a way that is
less intuitive and natural.

2. The interpretation of the strategy-driven quality model occurs at a higher ab-
straction level i.e., the level of design principles, and therefore it leads to a direct
identification of the real causes of quality flaws, as they are reflected in flaws at
the design level. As we pointed out earlier, in this new approach quality is ex-
pressed and evaluated in terms of an explicit knowledge-box of object-oriented
design.

Besides the improvement of the quality assessment process, the detection strate-
gies used in the context of a Factor-Strategy quality model proved to have a further ap-
plicability, at the conceptual level: for the first time a quality factor could be described
in a concrete and sharp manner with respect to a given programming paradigm. This
is achieved by describing the quality factors in terms of the detection strategies that

46

CHAPTER 4. ASSESSMENT OF DESIGN QUALITY

capture design problems that affect the quality factor, within the given paradigm. We
have also shown based on two versions of an industrial case study that the FS quality
model is usable in practice and provides us with information that is not only relevant
for quality assessment, but also for the further improvement of the system.

4.3 Assessing Technical Debt

Software systems must evolve continually to cope with requirements and environ-
ments that are permanently changing [Pre10]. Tough time to market constraints
and fast emerging business opportunities require swift but profound changes of the
original system. Therefore, in most software projects the focus is on immediate com-
pletion, on choosing a design or development approach that is effective in the short
term, even at the price of an increased complexity and a higher overall development
cost in the long term [McC07]. Cunningham introduced the term “technical debt”
[Cun92] to describe this widely spread phenomenon, where interest payments repre-
sent the extra development effort that will be required in the future, due to the hasty,
inappropriate design choices that are made today. Like in financial debt, there are two
options: continuously paying the interest, or paying down the principal, by refactoring
the design affected by flaws into a better one, and consequently gain by reducing the
future interest payment [Fow09].

When debt is incurred, at first, there is a sense of rapid feature delivery, but later,
integration, testing, and bug fixing become unpredictable and incomplete, to the point
where eventually, the cost of adding features becomes so high that it exceeds the cost
of writing the system from scratch [Ste11]. The cause of this unfortunate situation is
usually less visible: the internal quality of the design is declining in a system [Leh96];
and duplicated code, overly complex methods, non-cohesive classes, long parameter
lists, are just a few signs of this decline [FBB+99]. These, and many others, are
usually the symptoms of higher-level design problems, which are usually known as
design flaws [Mar04], design smells [FBB+99] or anti-patterns [BMM98].

Technical debt is not always bad. Many times the decision to incur debt is the
correct one, especially when considering non-technical constraints [KTWW11]. How-
ever, most of the time, incurring debt has a negative impact on the quality of design;
and, unlike its financial counterpart, technical debt starts by being less visible, and
therefore easier to ignore [McC07].

In [Mar12]1we defined a framework for assessing technical debt by exposing debt
symptoms at the design level. The framework is based on detecting a set of relevant
design flaws and measuring the negative impact of each detected flaw instance on the
overall design quality.

The literature proposes various approaches [Ciu99, Mun05, LM06, Tri08, MGDLM10]
to detect design flaws in object-oriented systems. Although these techniques are valu-
able for enabling the identification of individual problems, to our knowledge there are
no publications proposing a framework to support the overall assessment of technical
debt symptoms, by aggregating the results of individual design flaw detection tech-
niques. Nevertheless, the idea of aggregating basic quality indicators into a quality
model is not new. The literature proposes various models [Dro95, BD02, DSP+07],
all based on the Factor-Criteria-Metric (FCM) decompositional approach introduced by
McCall and Boehm [Pre10]. Although the FCM approach is widely used, it has at least
one significant limitation: the basic indicators in FCM are metrics, and therefore they
are unable to expose the actual design flaws that lead to technical debt, as abnormal

1This section is partially reproduced from [Mar12], including the figure. Used by permission.

47

4.3. ASSESSING TECHNICAL DEBT

metric values are just symptoms of a design flaw, but not the flaw itself [MR04].
In [Mar12] we introduced framework that overcomes this limitation, as it builds on

top of detected instances of design flaws instead of metrics. As a result, the framework
provides additional benefits in three directions:

• Assessment. The framework helps assess the actual status of a design, by iden-
tifying the flaws that affect a system, and by measuring their negative impact on
the overall design. Such an assessment is particularly relevant when a company
acquires a software system from another company [KTWW11]. In such cases,
it is essential to spot signs of a fragile design structure, which are usually the
result of technical debt accumulated over time, by a team that was unwilling or
incapable of paying down the “principal”, namely to restructure the design.

• Monitoring. As opposed to financial debt, – where one knows from the beginning
the debt value – when making a development decision, it is hardly possible to
know beforehand its actual impact, even when knowing that the decision will
incur technical debt. By quantifying debt symptoms, this framework makes it
possible to continuously monitor the evolution of the system, during a period
when such a critical design decision is implemented.

• Restructuring. Technical debt is reduced when a team decides to refactor the
design [Fow09] instead of paying the additional costs of maintaining a flawed
design fragment. By revealing the type, location and severity of design flaws this
assessment framework allows a team to prioritize refactoring, and to perform it
systematically.

4.3.1 Framework for Assessing Debt Symptoms

Building the assessment framework involves four steps: (i) select a set of relevant
design flaws, (ii) define rules for the detection of each design flaw, (iii) measure the
negative influence of each detected flaw instance; and eventually, (iv) compute an
overall score that summarizes the design quality status of a system, by taking into
account the influence of all detected flaws. For each of these steps, we distinguish in
our description between two aspects: the conceptual side, and the decisions made for
the actual implementation.

Select relevant design flaws It is impossible to establish an objective and gen-
eral set of rules that would automatically lead to high-quality design. However,
there is a common understanding of some general, high-level characteristics of a
good design [Pre10]; notably, Coad and Yourdon identify four essential traits of a
good object-oriented design, namely: low coupling, high cohesion, moderate complex-
ity and proper encapsulation. Consequently, many authors have formulated design
principles, rules, and heuristics [M.88, Mar02c, Rie96] that would help developers
design better object-oriented systems. Additionally, the software refactoring commu-
nity [BMM98, FBB+99] is describing design flaws, as a means to highlight frequently
encountered situations where the aforementioned design principles and rules are vi-
olated.

The framework can be used with any type of design flaws, ranging from fine-
grained ones that affect methods (e.g.,Code Duplication) to architectural flaws that
occur at the level of subsystems (e.g.,Cyclic Dependencies [Rie96]). The mixture of
flaws that are included in an actual framework instantiation should reflect the as-
sessment focus.

48

CHAPTER 4. ASSESSMENT OF DESIGN QUALITY

For the concrete instantiation of the framework we selected eight design flaws
based on the following characteristics:

1. Significant. We include only design flaws that are well described in the literature
and for which empirical studies or experience reports (e.g., [MM11], [KDPG09])
indicate a high occurrence rate and a significant negative impact on the per-
ceived quality of the analyzed systems (e.g., high correlation with bugs).

2. Balanced. We select a minimal set of design flaws that cover in a balanced
manner the aforementioned traits of good design identified by Coad and Yourdon
[CY91a].

3. Accurate. We use only design flaws that proved in our earlier studies [LM06,
Mar04] to be automatically detectable with a high level of accuracy (i.e., good
precision and recall). In fact, this is the main reason why we did not include any
architectural flaws, as their detection accuracy requires a precise specification
of the subsystem structure, which is often unavailable for systems such as the
ones used for the case study.

These design flaws are detected automatically using detection strategies, as de-
scribed in Section 3.2.

Measure the impact of design flaws Each design flaw affects to some extent the
overall quality of a system, but not all have the same negative impact. So, in order
to increase the accuracy of the assessment framework, the negative impact of each
design flaw instance has to be correctly quantified. We take into account three factors:

1. Influence (Iflaw type). This measures how strongly a type of design flaw affects the
criteria of good design. We take into account the four aforementioned criteria
identified by Coad and Yourdon [CY91a] and propose a three-level scale (HIGH,
MEDIUM, LOW) to characterize the negative influence of a design flaw on each of
the four criteria. The actual Iflawtype values are the result of assigning numerical
values to each of the three levels, and of computing a weighted arithmetic mean
between the four criteria, where each weight represents the relative importance
of a design criterion in a given assessment scenario.

2. Granularity (Gflaw type). In general, a flaw that affects methods has a smaller
impact on the overall quality than one affecting subsystems. Thus, we assign
a weight to each design flaw according to the type of design entities (e.g., class,
method) that it affects.

3. Severity (Sflaw instance). The first two factors refer to design flaw types, and thus
weigh equally all instances of the same flaw. However, not all cases are equal,
and, therefore, we define for each flaw a severity score based on the most critical
symptom of the flaw, measured by one or more metrics. To allow comparisons
among design flaws, severity score have a lower limit of 1 (low) and upper limit
of 10 (high).

Based on the three factors we compute the Flaw Impact Score (FIS) of a design flaw
instance as follows:

FISflaw instance = Iflaw type ×Gflaw type × Sflaw instance

49

4.3. ASSESSING TECHNICAL DEBT

Compute the overall score In order to get an overview of design debt in a system
the various instances of anti-patterns must be aggregated.

DSI =

∑
all flaw instances FISflaw instance

KLOC

KLOC represents the number of thousands lines of code of the system. Scaling
the Debt Symptom Index relatively to the code size of systems makes DSI values
comparable among systems.

4.3.2 Experimental Remarks

We have used the framework to analyze 63 releases of two well-known Eclipse projects:
the Java Development Toolkit (JDT) and the Eclipse Modeling Framework (EMF). The
JDT project defines a full-featured Java IDE that provides a large number of views,
editors, wizards, and refactoring tools [Fou11a]. The EMF project is a modeling frame-
work and code generation facility for building applications based on a structured data
model [Fou11b].

The results of this case study led us to several intriguing conclusions:

• Although our intuition says that a steep growth in code size would harm the de-
sign, the data from the two analyzed systems show something different: abrupt
growths of code size are not necessarily increasing debt, nor does a smooth
growth guarantee that technical debt is under control.

• Debt symptoms can have significant variations, and both systems show an al-
ternation of decay and improvement phases. However, the starting point is very
important: JDT started with a high level of debt symptoms and although reduced
significantly, it stays above the values measured in the evolution of EMF.

• The most significant variations of DSI occur in the earlier releases, while later in
the lifetime of the systems the DSI tends to stabilize completely. Furthermore,
with one notable exception (JDT 3.3.1) the DSI suffers almost no variations
during minor releases, which is a sign that none of the two development teams
use the minor releases to perform refactorings.

• While some design flaws (e.g.,Brain Method, Refused Parent Bequest, Code Dupli-
cation) play a significant role in both systems, not all design flaws have the same
negative impact in both systems. Moreover, the same flaw may have different
evolution patterns in different systems.

• The diligence and the reactivity of refactoring actions show that the design flaws
analyzed by our framework capture sensitive design characteristics, and that
experienced developers considered them important enough to keep them under
control.

• In the absence of a tool-supported framework, even experienced developers, such
as those that work on JDT and EMF, have difficulties in addressing the symp-
toms of design debt in a systematic manner.

Assessing design symptoms of technical debt is complex. Therefore, the presented
framework can provide both a coarse-grained perspective, to monitor the evolution
of debt over time, and a more detailed perspective that enables locating and under-
standing individual flaws, which can lead in turn to a systematic refactoring. The
proposed framework provides both. The framework achieves this by making design

50

CHAPTER 4. ASSESSMENT OF DESIGN QUALITY

flaws explicit, which in return helps developers and quality engineers to connect them
to design quality goals (e.g., low coupling, tight encapsulation).

The provided assessment is quantitative, informative and natural, as it directly
measures technical debt in terms of major design flaws that incur future evolution
and maintenance costs. The framework is useful, because the case study showed that
the framework characterizes quality aspects that the developers of the two systems
have considered important. This is revealed by the fact that for all flaws, significant
signs of refactoring actions have been noticed.

We have observed that the tool support offered by such a framework is necessary:
without it, refactoring actions are not always coherent and systematic and their ben-
efit can be neutralized by new instances of the same flaws. We are aware that debt
symptoms can be also project-specific; for example, an application with no interna-
tionalization support that is acquired by a company for which internationalization
is mandatory automatically incurs debt [KTWW11]. Assuming that detection rules
for project-specific debt symptoms can be defined, the framework is flexible enough
to accommodate them next to the general rules for design quality presented here.
Furthermore, the framework is not aimed to measure or predict the actual effort or
financial cost associated with technical debt [Fow09]. This is a highly challenging
task, which needs to be addressed in the future.

51

Chapter 5

Automation of Design Assessment

Legacy systems tend to be extremely large, up to 10-20 million lines of code, and
therefore the scalability of the proposed approaches is crucial. Thus, for performing
quality assessments having the appropriate tools is a must. Because of this we put a
particular emphasis on validating our ideas by building scalable tools.

5.1 Problem Statement

There are a number of commercial standalone tools like Klocwork Insight [Inc10],
Structure 101 [Sof10], IBM Rational Quality Manager [IBM10] as well as open-source
tools like PMD [Cop05] or Checkstyle [Web10]. In spite of this apparent wealth of
instruments for assessing maintenance issues, most of these tools don’t go beyond
the display of uncountable analysis results and metrics values and raising warning
if some – oftentimes arbitrary – threshold values are exceeded. In the recent years
countless code analysis tools support tasks as different as bug pattern identification
[oM10, Cop05], clone detection [Ins10, Inc10] and dependency cycle analysis [Gmb10,
Sof10].

All these tools, however, focus on very specific aspects of software quality and
are, hence, not suited for a holistic quality assessment. Moreover, these tools pro-
vide sophisticated analysis techniques, but often fail to support quality engineers in
interpreting the analysis results. In other words, such tools are providing low-level
warnings that are not explicitly aggregated and connected to the high-level maintain-
ability requirements (i.e., he quality model).

To address this problem multiple dashboard tools like Sonar [Son10] or QALab
[Con09b] are built on top of the specialized quality analysis tools, collecting, aggre-
gating and visualizing data of metric calculators, and/or static analysis tools. Dash-
boards aim to provide a quality overview of a software system to monitor and control
development activities. However, none of these tools establishes an explicit link be-
tween the specified quality requirements (i.e., the quality model) and the actual qual-
ity characteristics of a software system (i.e., the code analysis tools) [DHH+11]. There
are few notable tools that provide support for quality models, most of them the re-
sult of European or national research projects: SQUALE [LC09], Quamoco/ConQAT
[DHH+11] and Alitheia [Con09c]. SQUALE uses a fixed quality model, a fixed set of
code analysis tools, and is limited to automated measure. Quamoco/ConQAT and
Alitheia allow for project-specific customizations of quality models, mechanisms for
a flexible configuration and integration of code analysis tools, as well as a seamless
integration of results generated by manual analyses like inspections and reviews.

More recently a set of source code analysis environments have emerged, like
MOOSE [DGN05], Sonar [Son10] or ConQAT [DPS05]. All of these are very mature,

53

5.2. IPLASMA: AN INTEGRATED QUALITY ASSESSMENT PLATFORM

feature-rich tools which contain many innovative QA techniques. However, they are
separated from the place where the code that they are analyzing is produced, namely
the IDEs. Thus, there is an unfortunate separation between quality assessment and
the actual development, and consequently a separation between the people who write
the software and those who asses its quality. As a result, the feedback loop from
code and reviews is very weak and inefficient, as developer will learn about the vari-
ous design problems only from time to time (i.e., after each code review), and usually
only long after the code has been written. In result, this makes it very hard to solve
all problems, because of the large number of problems that cumulate over time; and
it’s also hard to solve them efficiently because the context of that design fragment is
probably long forgotten.

Because of this drawback, many of the aforementioned tools seek some form in-
tegration with the development process, either by providing means of integration in
the build process [Inc10, Son10] and/or by integration in IDEs [Inc10, Cop05]. While
the integration in the build process is definitely a step forward in the right direction
— Sonar being a glorious [Son10] illustration of this category -– it still has the disad-
vantage that all problems are reported in a centralized manner and most of the times
they lack providing the exact context of a design problem. Concerning the quality
assessment tools that are integrated in IDEs, the biggest problem is that they level of
integration is very shallow. Most of these are de facto standalone tools that lack any
synergy [Zel07] with the other components of the development environment. In al-
most all cases the analyses have to be triggered by the developer and thus do not run
continuously during development. In Eclipse one notable exception is the Checkstyle
plug-in [Web10] that detects code-style violations by using a project builder, which
means that whenever the build process is started the files are analyzed by Check-
style as well. This plugin has the same continuous analysis approach like INCODE,
however, the problems that it detects are more related to coding style (e.g., code con-
ventions) than to object-oriented design.

5.2 iPlasma: an Integrated Quality Assessment Platform

IPLASMA1 is an integrated environment for quality analysis of object-oriented software
systems that includes support for all the necessary phases of analysis: from model ex-
traction (including scalable parsing for C++ and Java) up to high-level metrics-based
analysis, or detection of code duplication. IPLASMA has three major advantages: ex-
tensibility of supported analysis, integration with further analysis tools and scalabil-
ity, as were used in the past to analyze large-scale industrial projects of the size of
millions of code lines (e.g., Eclipse and Mozilla) [MMM+05, LM06] 2.

Figure 5.1 presents the layered structure of the IPLASMA quality assessment plat-
form. Notice that the tool platform starts directly from the source code (C++ or Java)
and provides the complete support needed for all the phases involved in the analysis
process, from parsing the code and building a model up to an easy definition of the
desired analyses including even the detection of code duplication, all integrated by a
uniform front-end, namely INSIDER. Let us take a closer look at the layers of IPLASMA.

1Integrated PLAtform for Software Modeling and Analysis.
2This section is partially reproduced from [LM06], including all figures. ©Springer-Verlag Berlin

Heidelberg 2006. Used by permission.

54

CHAPTER 5. AUTOMATION OF DESIGN ASSESSMENT

Figure 5.1: The layered structure of the IPLASMA quality assessment platform.

5.2.1 MEMORIA and the Model Extractors

An essential task in a software analysis process is the construction of a proper model
of the system. The information contained in the model strongly depends on its usage
scenarios. As IPLASMA is intended to support mainly analyses focused on object-
oriented design, it is important to know the types of the analyzed system, the opera-
tions and variables together with information about their usages (e.g., the inheritance
relations between classes, the call-graph etc.).

In IPLASMA we defined MEMORIA as an object-oriented meta-model that can store
all the above information (and more). One of the key roles of MEMORIA is to provide
a consistent model even in the presence of incomplete code or missing libraries, to
allow the analysis of large systems and to ease the navigation within a system.

Extracting such a model from the source code requires powerful and scalable pars-
ing techniques. Currently, IPLASMA supports two mainstream object-oriented lan-
guages i.e., C++ and Java. For Java systems we use the open-source parsing library
called RECODER3 to extract all the information required by the MEMORIA meta-model.
For C++ code we have MCC, a tool which extracts the aforementioned design infor-
mation from the source code (even incomplete code!), and produces a set of related
(fully normalized) ASCII tables containing the extracted design information (including
even information about templates). Although this information is eventually loaded in
form of a MEMORIA model, the ASCII tables could be easily loaded in a RDBMS and
interrogated in the form of SQL queries.

5.2.2 Analyses for Quality Assessment

Based on the extracted information several types of analyses (e.g., metrics, metrics-
based rules for detecting design problems, quality models, etc.) can be defined.
IPLASMA contains a library of more than 80 state-of-the-art and novel design metrics,
measuring different types of design entities from operations to classes and packages.
In Chapter 3 we showed how detection strategies allow us to combine metrics in more

3See http://recoder.sourceforge.net/

55

5.2. IPLASMA: AN INTEGRATED QUALITY ASSESSMENT PLATFORM

complex rules for detecting design problems. In IPLASMA detection strategies can be
implemented and adapted.

As we have seen in Section 3.4, an important issue is the detection of code dupli-
cation. In IPLASMA the detection of code duplication is supported using the DUDE tool.
DUDE uses textual comparison at the level of lines of code in order to detect portions
of duplicated code. It has a powerful detection engine which can also cover some
fine changes to the duplicated code such as renaming of some variables, changes in
indentation or comments. The most important aspect about DUDE is that it can anno-
tate a MEMORIA model with all extracted information about the presence of duplicated
code. This makes possible to correlate duplications with their context (e.g., detect
operations from sibling classes that contain duplication).

5.2.3 Insider: the Integrating Front-end

Assessing the design quality of an object-oriented system requires the collaboration
of many tools. Using them independently can easily transform the analysis process
into a nightmare, making it completely unscalable for usage on large-scale systems.
One of the key aspects of IPLASMA is that all these analyses are integrated and can

Figure 5.2: Key elements of INSIDER, the front-end of IPLASMA.

be used in a uniform manner through a flexible front-end, called INSIDER. In other
words, INSIDER is a front-end (see Figure 5.2) which offers the possibility to integrate
independent analyses (in the form of plugins) in a common framework. This approach
makes INSIDER open implemented and thus easily extendable with any further needed
analyses.

In order to use INSIDER first a project must be loaded by indicating the folder where
the source code of the project is located. During the loading phase, the sources are
parsed and the model is constructed. After that, the system can be analyzed using
the three major zones of the user interface (see Figure 5.2), namely:

• Group Inspector. In the top-right part of the screen a selected group of design
entities (e.g., classes and operations) are displayed. Initially, the Group Inspector

56

CHAPTER 5. AUTOMATION OF DESIGN ASSESSMENT

displays a group with only one entity: the system itself. In a display we can
choose a number of metrics (over 80) that should be displayed. As seen in
Figure 5.2 the metrics are displayed for all the entities in the group.

• Group Manager. During a software analysis we usually need to work with more
than a single group. The groups that are currently open are displayed on the top-
left side of the screen. The Group Manager allows us to select a group that we
want to see in the Group Inspector. It also allows us to delete those groups that
are no longer relevant for the analysis. Last but not least, the Group Manager
allows us to create a new group, by filtering the entities of the selected group
based on a filtering condition, i.e., a combination of metrics (as in detection
strategies). Apart from the predefined filters, new filters can be defined at run-
time using the Filter Editor (see windows at the bottom-right of Figure 5.2).

• Entity Browser. When an entity is selected in the Group Inspector on the bottom
part of the screen we see various details about that entity. For example, for a
class we see the position of the class in the class hierarchy, its methods and
attributes, etc. The big advantage of the Entity Browser is that any reference to
another design entity (e.g., the base class of the selected class) is a hyperlink to
that entity.

Although IPLASMA was developed as a research tool, it is not a toy. It was success-
fully used for analyzing the design of more than ten real-world, industrial systems
including very large open-source systems (>1 MLOC), like Mozilla (C++, 2.56 million
LOC) and Eclipse, (Java, 1.36 million LOC). IPLASMA was also used during several con-
sultancy activities for industrial partners, most of them involved in developing large
software applications for telecom systems. More information about IPLASMA, includ-
ing the possibility of downloading it, can be found at: http://loose.upt.ro/iplasma/

5.3 inCode: Continuous Quality Assessment

The typical usage scenario of a QA module/methodology is currently this: a devel-
oper, feeling that something is wrong with the design/code, is using the QA module
provided by (or available for) her IDE to compute a suite of metrics; noticing some
abnormal metric values, she must infer what the real design problem is from the
informal description of the interpretation model of the metric. This is not easy at
all, especially when the analysis occurs long after that code/design fragment has
been created, and/or the code was written by someone else. But even after finding
out what the problem is, correcting the design flaws moves the developer to another
world, where she must compose the proper restructuring solution using the basic
refactorings available in her IDE. This is again a challenging and painstaking opera-
tion. We believe that this process is so tedious because of two reasons: (i) metrics used
to detect design flaws are only “detection atoms”, and, therefore incapable of pointing
out to relevant correction (restructuring) solutions; (ii) refactorings, as they are used
know, are also only the “correction atoms”, and therefore they don’t represent the
correction solution for all but non-trivial design problems.

INCODE is an Eclipse plugin in which design problems are detected continuously.
When the Eclipse workbench starts, INCODE also starts to analyze (in background)
the source file currently active in the editor. When a design problem is detected, a
red marker is placed on the ruler, next to the affected class or method (and also in
the overview ruler on the right side of the editor). The inCode markers are similar to
the markers used for compiler errors or warnings. The presence of these markers is

57

5.3. INCODE: CONTINUOUS QUALITY ASSESSMENT

very dynamic: as new code is written, or code is modified new markers may appear,
or existing markers may disappear.

With INCODE we propose a novel type of QA tools, with the following (agile) “mani-
festo”:

• Continuous detection and correction of design flaws, instead of standalone, post-
factum (or even “post-mortem”) code inspections;

• Exposure of real design flaws, instead of displaying abnormal metrics values

• Contextual, problem-driven, tool-assisted restructuring strategies, instead of a
repetitive composition of restructuring solutions from atomic refactorings

Next we are going to briefly introduce the main features of INCODE i.e., those that
reveal its novelty.

5.3.1 Continuous assessment mode

a

c

inCode Marker

 inCode in QuickFix pop-up

inCode Tips view
 Context-senstive
description

Navigable context

d

e

b

f Refactoring advice

g
Ignore / unignore
mechanism

h

Figure 5.3: INCODE marks automatically, and updates continuously, code entities
with design problems. The INCODE TIPS view can be used to better understand the
causes, context and possible remedies for a particular instance of a design problem.

inCode Markers When the Eclipse workbench is started, INCODE begins to analyze
in background the source file currently active in the editor. As seen in Figure 5.3,
when a design problem is detected, INCODE places a red marker on the ruler (see4

a), next to the affected class or method. As mentioned before, INCODE markers are
similar to those used by Eclipse to indicate compiler errors or warnings. The presence
of these markers is very dynamic: as new code is written, or code is modified new
markers may appear, or existing markers may disappear.

4In this entire passage we will refer the various parts of Figure 5.3 by the corresponding labels
depicted there

58

CHAPTER 5. AUTOMATION OF DESIGN ASSESSMENT

inCode Tips View By launching the quick fix for an INCODE marker (see b), the
INCODE TIPS view (see c) is opened, providing a wealth of contextualized information
on the particular cause (see d) of a detected problem. Although the design problems
are detected using metrics-based rules [LM06], the description of the problem is in
terms of design concepts, rather than numbers; in other words, the description is
hiding the unnecessary complexity of working with software metrics. However, the
description contains a set of hyperlinks that enable the developer to “zoom-in” in
exploring in detail the relevant context of that problem (see e). Furthermore, the
description may contain significant correlations of this problem with other design flaws
detected by INCODE elsewhere in the project.

The other significant part of the INCODE TIPS view is the one that provides con-
crete refactoring advices (see f) i.e., hints on how that particular problem instance
can be corrected, by taking into account the entire context of dependencies of that
class/method. Furthermore, if INCODE detects that in a given context a predefined
Eclipse refactoring, or a composed restructuring (defined by INCODE) can be applied,
the suggested code transformation can be triggered directly from the INCODE TIPS

view. Currently, the set of refactorings that can be triggered automatically is limited,
but we are working on extending both the number of contexts where INCODE can per-
form a design improvement, as well as the number of performable restructurings that
involve the correlation of multiple atomic refactorings [Ver09].

Detected problems As mentioned before, we believe that metrics used in isolation
cannot help in detecting real design problems [Mar04]. Therefore, in INCODE we use
detection strategies to quantify design problems [LM06]. Currently INCODE detects
four well-known design problems related to an improper distribution of intelligence
among classes, namely God Class, Data Class, Feature Envy and Code Duplication.
Thus, while the detection is based on object-oriented metrics, developers do not have
to interact directly with metrics. Instead, they can reason about the quality of their
design at the conceptual level that is more convenient for them.

5.3.2 Global assessment mode

While the continuous assessment mode is what makes INCODE outstanding, we also
need a way to “zoom-out” in order to see the global design quality picture for a sys-
tem. A case where this is obviously needed, is the first time when we first approach
an existing system; this is oftentimes the case, as we rarely start writing code from
the scratch. Thus, an initial, global assessment is mandatory, before diving in the
continuous mode. Furthermore, although the continuous assessment mode is aimed
to distribute the responsibility of quality assessment among developers, from time to
time, it is still needed to get a clear overview of the quality of a system.

INCODE addresses this need by providing a set of three views that reveal the overall
quality of a system, namely (see5 Figure 5.4): INCODE OVERVIEW (see b) and the
INCODE INSIGHT view (see c), for summarizing the quality aspects of detailed design;
and the INCODE ARCHITECTURAL OVERVIEW (see d) for summarizing the high-level
design (architectural) issues. In terms of user interactions, these views are reached
via the pop-up menus associated with the Package Explorer and Outline (see a) of
Eclipse.

In this context it is worth mentioning that these overview analyses can be executed
not only on the entire system, but also on a package level. Furthermore, INCODE

5In this entire passage we will refer the various parts of Figure 5.4 by the corresponding labels
depicted there.

59

5.3. INCODE: CONTINUOUS QUALITY ASSESSMENT

a
inCode in the pop-up menu

b inCode Overview

b1

Summary of
design problems

b2
Overview Pyramid

Gravity
scores

d inCode Architectural Overview

d1
Summary of
problems

d2 Dependency
graph

d3
Dependency
details

c inCode Insight (visual overview of design flaws)

c1
Polymetric
views

Code
proximity

c2

Figure 5.4: Global Assessment. The INCODEOVERVIEW and INCODEINSIGHT should
be used as a starting point for a closer inspection. Architectural flaws can also be
inspected using a dedicated view

supports the analysis of an entire Eclipse workspace (consisting of one or more Eclipse
projects), as well as the analysis of a single project, both in isolation, and by taking
into account its dependencies on other projects contained in the same workspace.

inCode Overview This view has two components: (i) the Overview Pyramid (see b1)
that captures the key characteristics of the system/package in terms of complexity,
coupling and shape of class hierarchies [LM06]; and (ii) a categorized list of detected
design problems (see b2). From here, the problematic classes and methods can be
inspected closer in order to understand for each cases the particular causes and
the suggested correction steps. Due to the close integration with Eclipse, at any
moment, the engineer has also direct access to the source-code of the problematic
code fragment.

When it comes to low-level design problems, for large systems their number can
be overwhelming. Therefore in INCODE we use for each of the four design problems
a gravity score that indicate for each detected instance how severe the symptoms of
the design problem are. As the detection of the design problem is based on metrics
[LM06], the gravity scores are computed based on how much the various key mea-
sures are beyond the thresholds used in the detection rule. For example, a Data
Class instance with 40 public attributes has a (significantly) higher gravity score than
other instance with only 6 public attributes. In order to make the gravity scores
comparable, each factor that enters that gravity score is normalized. Thus, the cate-

60

CHAPTER 5. AUTOMATION OF DESIGN ASSESSMENT

gorized lists of design problems are sorted descending based on the gravity score (see
b2). This allows developers to prioritize the inspection and (hopefully) the correction
of the most critical design fragments.

inCode Insight It is not always true that a picture is worth a thousand words, but
it is certainly true that well-designed software visualizations can be efficient means
to support developers in assessing quality, especially for understanding problems in
context. Therefore, in INCODE we created the INCODEINSIGHT view (see c) which can
display polymetric views [LD03]. In INCODE INSIGHT visualizations can be explored:
developers can double-click figures to get the corresponding program entities (e.g.,
class, method) opened in the editor; alternatively code can be viewed without losing
the visual context, by means of the hover code viewers (see c2) that it supports.

The support of INCODE for polymetric visualizations is quite wide, but there is one
visualization which proved to be especially useful in getting an overview of design
problems: the Design Flaws View, which is an adaptation of the System Complexity
View [LD03], in which classes are represented as rectangles, with the number of
attributes determining the width, and the number of methods setting the rectangle’s
length. The point of our adaptation is the color: a rectangle is green if INCODE has
not detected any design problems, it is yellow if only method-level problems have been
detected, and it is red if class-level problems have been identified. The advantage of
this view is that it allows an engineer to see how design problems are spread in the
system, and especially to which extent problems are “clustered” in the various class
hierarchies.

inCode Architectural Overview INCODE complements the detection of flaws at the
level of detailed design with support for quality assessment at the architectural level.
This is done by automatically detecting and providing significant contextual infor-
mation about (see d2 and d3) four well-known architectural problems, related to
subsystem dependencies [Mar02c]. While architectural problems are also described
using the INCODE TIPS view, there is one significant element that supports the under-
standing of all these problems: the visual representation of the package/subsystem-
dependency graph (see d2). The graph reveals the various cycles in which a package
is involved, but it also annotates the graph with additional information about the
strength of a dependency, by displaying for each package its Instability Factor and
for each dependency the number of client classes and the number of server/provider
classes that are actually causing the dependency. All this information, provides a
visual support for the understanding and solving of these four architectural prob-
lems. Furthermore, although these problems are considered to be “high-level” ones,
INCODE helps exploring the problems down to the methods and classes that cause
the dependencies (see d3).

We believe that INCODE and other future tools that will take the same approach will
not only improve design and code; they will do the same with designers and develop-
ers because by treating the whole issue of design flaw detection in terms of violations
of design principles, heuristics and best practices, engineers will be constantly con-
fronted with these good design rules and will understand the real causes of a design
problem rather than its symptoms (as revealed by plain metrics). Consequently, they
will learn how to avoid them in the future. Furthermore, the controlled correction
(restructuring) process will teach developers how to solve various design problems in
a context-sensitive manner.

61

Chapter 6

Improvement of Software Design

There is no perfect software design. Like all human activities, the process of designing
software is error prone and object-oriented design makes no exception. The flaws of
the design structure, also known as “bad smells” [FBB+99] have a strong negative
impact on quality attributes such as flexibility or maintainability. Thus, not only the
identification and detection of design flaws is important but also the correction of
these flaws is essential for the improvement of software quality.

6.1 Problem Statement

In [CCI90], the authors define restructuring as ”the transformation from one represen-
tation form to another at the same relative abstraction level, while preserving the subject
system’s external behavior (functionality and semantics).”. Thus, program restructur-
ing is the transformation of the source code of a program that preserves its semantics
and external behavior [Opd92]. The term behavior preserving means that program
should produce the same externally observable behavior for any legal input after the
refactoring was applied as it did before.

In [Rob99], the author argues that if timing constraints are part of the behavior, it
becomes very difficult to argue behavior preservation. Other non-functional properties
of a system, such as memory usage would be very hard to maintain in a refactoring.
For this reason, in this diploma we do not consider the case of programs for which
timing constraints or non-functional requirements are part of their specification. In
order to be broadly used by practitioners, refactorings have to guarantee that they
preserve the behavior of the system. One of the reasons that the structure of a sys-
tem degrades is is the fear of touching something that works, even if the structure is
no longer appropriate. Therefore, a tool supported approach to the refactoring process
has to guarantee that its changes don’t alter the behavior of the system. But it is the-
oretically impossible for a refactoring technique to encompass all the programs that
exhibit the same behavior. Existing work in the field of refactoring has either relied on
a semi-formal demonstration of behavior preservation [Opd92], or no demonstration
has been given at all [FBB+99]. The refactorings proposed in [FBB+99] and [Ker05]
are behavior preserving more because of good engineering practice than because of
any formal proof.

Composite Refactorings Even the simplest refactorings can be hard to implement.
For example encapsulating a field is not just changing its modifier into private, but
there can be references to that field and their scope is the whole system, thus these
references have to be updated too. Thus, a methodology of describing high-level refac-

63

6.1. PROBLEM STATEMENT

torings based on composition has been proposed in [OCN99], and reemphasized by
Kerievsky [Ker05].

Composite refactorings are also good candidates for automation. Therefore, in
our work [LM06, Ver09] we use this approach of composing a suite of code transfor-
mations into a high-level refactoring. The use of composite refactorings has several
advantages [MD03]: (i) they are better at capturing the design intent of the software
change introduced by the refactoring, and thus it becomes easier to understand how
the software has been refactored; (ii) using composite refactorings represents a per-
formance gain as the tool has to check the preconditions only once for the composite
refactoring, rather than for each primitive transformation in the refactoring sequence;
(iii) composite refactorings weaken the behavior preservation for their constituents.
The primitive transformations in a sequence don’t have to preserve the behavior, as
long as the net effect of their composition is behavior preserving.

Refactoring Tools Today, a wide range of tools are available to automate various
aspects of refactoring. Depending on the tool and the kind of support that is pro-
vided, the degree of automation varies. Tools as the Refactoring Browser[RBJ97] and
XRefactory [Vit03] support a semi-automatic approach. A fully automated tool for
restructuring inheritance hierarchies and refactoring methods in SELF programs is
Guru [Moo96]. Given a collection of Self objects, Guru produces an equivalent set of
objects in which there is no duplication of methods or certain types of expressions.

There is also a tendency of integrating refactoring tools directly into software de-
velopment environments. This is the case for Eclipse, IntelliJ IDEA, Borland JBuilder,
etc. These tools apply a refactoring upon request of the user. There is much less
support for detecting where and when a refactoring can be applied. [SSL01] proposes
to do this by means of metrics, while [KEGN01] indicates where refactorings might be
applicable by automatically detecting program invariants using the Daikon tool.

A fully automated tool for identifying and removing bad smells in code is jDeodorant
[plu]. The methodology used by this tool consists of two parts: the first deals with the
identification of type-checking bad smells. The second concerns their elimination by
applying appropriate refactorings. Currently, jDeodorant identifies three bad smells:
Feature Envy, Type Checking and Long Method. Feature Envy is corrected with a
Move Method, Type Checking is corrected either by employing Replace Conditional
with Polymorphism or Replace Type Code with State/Strategy, while Long Method is
corrected using Extract Method. After analyzing a system, the plugin presents a
view which for example for Type Checking contains information about the Suggested
refactoring type, the Abstract Method Name that will be created, the number of System
Level Occurrences, the number of Class-Level Occurrences and the Average number of
statements per case. The refactorings that jDeodorant proposes are tightly integrated
in the Eclipse platform, but they do not favor composition. An example refactoring
supported is depicted in Figure 6.1.

The refactorings offered by jDeodorant are high-level refactorings that do all the
work that is needed in just one single big step, thus no decisions can be made at
runtime and smaller transformations cannot be reused. But the fact that the plugin
bridges the gap between problem detection and correction is highly valuable.

The Gap Between Flaw Detection and Correction In spite of this progress, re-
structuring large object oriented systems still remains a predominantly manual, time-
consuming, risky process, that involves extensive (and costly) human expertise (both
domain-specific and technical). In other words, restructuring is still an art, rather
than engineering, an aspect which is underlined by studies [Fea05, Pre10] showing

64

CHAPTER 6. IMPROVEMENT OF SOFTWARE DESIGN

Figure 6.1: Refactoring Wizard for the Replace Type Code with State/Strategy

that approximately 50% of maintainer time is spent exclusively on understanding the
code.

We believe that the major cause for this situation is the large gap that exists in
current IDEs between the automatic detection of significant design problems (i.e., the
quality assessment modules) and the automatic (or at least tool-supported) correction
of those problems (i.e. the refactoring/restructuring modules). Detection and correc-
tion of design flaws are unfortunately still two separated worlds.

The typical usage scenario of a quality assessment module (and/or methodology)
is currently this: a developer, feeling that something is wrong with the design/code,
is using the QA module provided by (or available for) her IDE to compute a suite of
metrics; noticing some abnormal metric values, she must infer what the real design
problem is from the informal description of the interpretation model of metrics. This
is not easy at all, especially when the analysis occurs long after that code/design
fragment has been created, and/or the code was written by someone else. But even
after finding out what the problem is, correcting the design flaws moves the developer
to another world, where she must compose the proper restructuring solution using
the basic refactorings available in her IDE. This is again a challenging and painstaking
operation. We believe that this process is so tedious because of two reasons: (i) metrics
used to detect design flaws are only “detection atoms”, and, therefore incapable of
pointing out to relevant correction (restructuring) solutions; (ii) refactorings, as they
are used now, are also only the “correction atoms”, and therefore they do not represent
the correction solution for all but non-trivial design problems.

6.2 Correction Plans

As mentioned earlier, after a problematic design fragment is detected, the next step
is to restructure the system, by removing the detected flaw. In most cases, it is not
enough to apply a single basic refactoring (that is usually available via a refactoring
plugin, e.g., Move Method, Push-Up Field [FBB+99]; instead, an entire sequence of
such refactorings is needed. These complex restructurings depend on two main fac-
tors: (i) the design flaw itself and (ii) further contextual information concerning the

65

6.2. CORRECTION PLANS

state of the system.
These contextualized correction solution must be be defined for each design flaw

that needs to be removed. In this context, in [TM05] we define correction plans as
“precisely defined procedures that describes a sequence of operations (basic refactor-
ings) that need to be carried out in order to eliminate an instance of a given design
problem”. These correction plans can be best imagined as an activity diagram, or a
logical schema, composed mainly of decision and action blocks (see Figure 6.2).

In [LM06] we took a first step by defining concrete correction plans for improving
object-oriented design with respect to its three main aspects: Complexity (identity
flaws), Coupling (collaboration flaws) and the use of Inheritance (classification flaws).
Each of these are described in terms of the design flaws defined in [LM06]1.

Correction Plan for Complexity Flaws We will illustrate this principle of correction
plans, by using the case of recovering from Complexity design flaws. The first step
in doing this is to identify the “intelligence magnets”, i.e., those classes that tend to
accumulate much more functionality than an abstraction should normally have. In
terms of detection strategies, this means to make a blacklist containing all classes
affected by the God Class or by the Brain Class flaws. For each of the classes in the
blacklist one has to find the flawed methods. A method is considered flawed if at least
one of the following is true: (i) it is a Brain Method; (ii) it contains duplicated code;
(iii) it accesses attributes from other classes, either directly or by means of accessor
methods.

Assuming that for a class in the blacklist we have gathered its flawed methods,
then in order to improve the design we have to follow the roadmap described in Fig-
ure 6.2, and explained briefly below.

Action 1: Remove duplication. The first thing to be done is to check if a method
contains portions of Code Duplication and remove that duplication. Because we an-
alyze the class from the perspective of complexity flaws we concentrate on removing
the intra-class duplication first. If a lot of duplication is found, the result of this step
can have a significant positive impact on the class, especially on its Brain Methods.

Action 2: Remove temporary fields. Among the bad smells in code described in
[FBB+99] we find one called Temporary Field. This is an attribute of a class used
only in a single method; in such cases the attribute should have been defined as a
local variable. Obviously, detecting such situations can be done by checking in the
class who other than the inspected method uses a particular attribute. If no one
else does, then we need to remove the temporary field and replace it with a local
variable. Why do we care? Remember that for both Brain Class and God Class one
of the “fingerprints” is a low cohesion. One of the causes of low cohesion could also
be a bunch of such temporary fields, which do not really characterize the abstraction
modeled by the class, and thus hamper the understanding of the class.

Action 3: Improve data-behavior locality. If in our inspection process we reach
a foreign data user, i.e., a method that accesses attributes of other classes, then we
have to refactor it so that we reach an optimal data-behavior locality. A foreign data
user has one characteristic: the value for the ATFD (Access To Foreign Data) [LM06]

1This section is partially reproduced from [LM06], including all figures. ©Springer-Verlag Berlin
Heidelberg 2006. Used by permission.

66

CHAPTER 6. IMPROVEMENT OF SOFTWARE DESIGN

Method with
Identity Disharmony

Intraclass
Duplication Host

Temporary Field
User

Foreign Data
User Feature Envy

Brain Method

Data Class

Remove Duplication

Replace Attribute
with Local Variable

Move Behavior to
Data Provider

Group used foreign
data by their

definition classes

Refactor for optimal
Data-Behavior

Locality

More Foreign
Data?

Extract Method

STOP

YES

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

NO

Figure 6.2: Restructuring in order to remove complexity flaws

is at least one. In a simplistic way we can say that refactoring in this case requires
one of these two actions:

1. Extract a part of the method and move it to the definition class of the accessed
attribute. The “ideal” case is when the method is affected by Feature Envy and
the class that provides the attributes is a Data Class. In this case the method
was simply misplaced, and needs to be moved to the Data Class. But life is
rarely that easy, so the situations that you will probably encounter are more
“gray” than “black and white”. In most cases only a fragment of the method
needs to be extracted and moved to another place. As a rule of thumb that we
often do this: if the class that provides the accessed attributes is “lightweight”
(i.e.,Data Class or close to it) try to extract fragments of functionality from the
“heavyweight” class and move them to the “lightweight” one.

67

6.3. CORRECTION STRATEGIES

2. Move the attribute from its definition class to the class where the user method
belongs. This is very rarely the case, especially in the context of Brain Class and
God Class. It applies only for cases where the attribute belongs to a small class
that has no serious reason to live, and which will be eventually removed from
the system.

Action 4: Refactor Brain Methods. If you reached this step while inspecting a
method that was initially reported as a Brain Method, first look if this is still the
case after proceeding with Action 1 and Action 3. Sometimes, removing duplication
and refactoring a method for better data-behavior locality solves the case of the Brain
Method.

6.3 Correction Strategies

Methodologically, correction plans are a significant step forward in the process of per-
forming complex restructurings. However, they are not specified sharp enough to
enable their automation. Therefore, in the diploma thesis of Verebi [Ver09] we made a
first step in moving beyond correction plans, and proposing tool-supported high-level
correction solutions for individual flaws i.e., correction strategies. In concrete terms,
we defined a correction strategy for a well-known design flaw, namely Feature Envy
[FBB+99]. This restructuring extension plugs into the mechanisms of INCODE for de-
tecting and signaling a Feature Envy and suggests the appropriate correction strategy
(see Section 5.3). As we will see in Section 6.4 the integration with INCODE is not
accidental, as our goal is to connect at the level of tools the detection and correction
of design flaws.

6.3.1 Detection Strategy

Feature Envy is a sign of violating the principle of grouping behavior and data together
and refers to a method that seems more interested in a class other than the one it
actually belongs to [FBB+99]. Te focus of the envy is the data. But this does not mean
that the class is only using the data directly, but also through accessor methods. We
are not interested in methods that use data from a a large number of classes, but
methods that are interested in few (one or two) classes. This is because this is a
suggestion that the affected method is misplaced, and not that it acts as a controller
[Rie96] or that it is a brain method [LM06].

The detection process counts the number of attributes belonging to external classes,
accessed either directly, or through accessor method. The detection strategy proposed
in [LM06] requires that these three conditions are met:

1. The method uses more than a few attributes of other classes. This translates
into a query on the ATFD and then a comparison with a predefined threshold.

2. The number of attributes accessed from an external class is in a much greater
proportion than the number of attributes that the method accesses from its
owning class. This rule is quantified by the LAA (Locality of Attribute Accesses)
metric.

3. The last requirement is that there are very few classes into which the method is
interested in. This requires to calculate the FDP (Foreign Data Providers) metric
and compare it to a predefined threshold.

68

CHAPTER 6. IMPROVEMENT OF SOFTWARE DESIGN

+ parseTarHeader()
- hdr: TarHeader

TarEntry + name: String
+ userId: int
+ groupId: int
+ size: int
+ mode: int

TarHeader

int offset = 0;
hdr.name = TarHeader.parseName(header, offset,
TarHeader.NAMELEN);
offset += TarHeader.NAMELEN;
hdr.mode = (int)TarHeader.parseOctal(header, offset,
TarHeader.MODELEN);
offset += TarHeader.MODELEN;
hdr.userId = (int)TarHeader.parseOctal(header, offset,
TarHeader.UIDLEN);
offset += TarHeader.UIDLEN;
hdr.groupId = (int)TarHeader.parseOctal(header, offset,
TarHeader.GIDLEN);
offset += TarHeader.GIDLEN;
hdr.size =TarHeader.parseOctal(header, offset,
TarHeader.SIZELEN);
offset += TarHeader.SIZELEN;
...

1 *

Figure 6.3: Feature Envy example

The example depicted in Figure 6.3 illustrates two classes, namely TarEntry and
TarHeader. The method parseTarHeader() envies the data from TarHeader and uses
this data directly to provide a functionality that should have been available in the
TarHeader class.

6.3.2 Suggested Correction Plans

Feature Envy problems can be corrected in three ways [FBB+99]: (i) by moving the
method to the class that it envies, (ii) by extracting only a fragment of the method and
then moving it to the class that it envies and (iii) by moving one or more attributes
to the class that the feature envy method belongs to. The correct application of any
of these methods in a system clearly improves its design quality, without altering its
external behavior. These three methods to correct a feature envy are in accordance to
one of these two principles: move behavior close to data or move data close to behavior.

The solution that we defined is to move a method to a class that it envies. The so-
lution of moving a field has not been considered because usually fields have stronger
conceptual binding to the classes in which they were initially placed [TC].

To move the method to one of the classes that it envies, only one precondition must
be met: there must be one and only one envied class. This is because if there is more
than one class, an accurate decision of where to move the method cannot be made.
Even if moving a class to one of the envied classes will remove the feature envy smell
of the class, an assessment that the overall structure of the system has improved
cannot be made accurately. Thus, the proposal to move the method will be made
only if there is exactly one envied class. Oftentimes, the class that the feature envy
method depends upon is a class with next to no functionality, sometimes even a data
class. If this is the case, moving the method will rebalance the overall distribution of
responsibilities in the system and will improve the data-behavior locality [LM06].

The target class in which the method is to be moved is the envied class. Once
the refactoring has successfully been executed, not only our method is no longer a
feature envy, but it is possible that another problem is solved too: if the envied class
was a data class, and the refactoring identified opportunities when it can encapsulate
some of its members after the method was moved (members that were used only by

69

6.3. CORRECTION STRATEGIES

the moved method), it is possible that the class would no longer be a data class.

6.3.3 Implementation of the Correction Strategy

INCODE accepts correction proposals from other plugins that connect to it through
an extension point, namely inCode.correctionStrategy. This extension point has three
attributes:

1. the class that executes the restructuring (this class must implement the ICorrec-
tionStrategy interface),

2. an identifier for the design problem that it fixes, so that INCODE can do the
mapping between the two, and

3. an identifier of the correction plan.

For example, the Move Method correction strategy is depicted in Listing 6.1. In this
case, the correction proposal is implemented in class MoveMethodCorrectionStrategy,
the identifier of the design problem is Feature Envy and the identifier of the correc-
tion strategy is Move Method.

Listing 6.1: The extension point for the Move Method correction strategy

<extension point="inCode.correctionStrategy">
<correctionStrategy

class="com.intooitus.refactoring.featureEnvy.MoveMethodCorrectionStrategy"
message="Feature Envy"
name="Move Method">

</correctionStrategy>
</extension>

The interface ICorrectionStrategy consists of four methods:

• RefactoringStatus execute()

This method executes the refactoring and returns a RefactoringStatus which can
be used to find the outcome of the operation. Additionally, the RefactoringStatus
class manages the problem severity. Problem severities are ordered as follows:
OK < INFO < WARNING < ERROR < FATAL. If the status does not have an entry,
then the default status severity is returned (i.e., OK).

• void setEntity(AbstractEntityInterface entity)

This method tells the correction strategy which is the entity on which it will
execute. A setter method is needed because extension points are registered stat-
ically, and we cannot know at the moment they are registered which is the prob-
lematic entity.

• RefactoringStatus checkPreconditions()

This method will check that the preconditions specified in the previous section
for each design flaw are met in order to proceed with the refactoring. This meth-
ods returns a status that can be later checked to see if the refactoring can be
performed (using RefactoringStatus#isOK()).

• String getMessage() This method returns the message that will appear in Tips
View. INCODE will display this message and if the preconditions are met, this
message can be selected by the user and thus the refactoring is triggered.

70

CHAPTER 6. IMPROVEMENT OF SOFTWARE DESIGN

Next, we will describe the implementation of a concrete correction strategy, namely
Move Method to correct a Feature Envy. The code of the specified correction strategy
is the one in listing 6.2. In the remainder of this section we will explain this class in
detail.

Listing 6.2: Move Method correction strategy

public class MoveMethodCorrectionStrategy implements ICorrectionStrategy {

public static final String MOVE_METHOD = "Move method";
private AbstractEntityInterface entity;
private GroupEntity foreignDataProvidersGroup;
private FeatureEnvyRefactoring refactoring;

public void setEntity(AbstractEntityInterface entity){
this.entity = entity;
foreignDataProvidersGroup = entity.getGroup("FDPG");

}

public RefactoringStatus execute(){
new RefactoringAlgorithmWizard(refactoring,

"Move Method Correction Strategy");
return refactoring.execute();

}

public RefactoringStatus checkPreconditions() {
refactoring = new FeatureEnvyRefactoring(entity);
IPrimaryElement initialConditions = refactoring.checkInitialConditions();
return initialConditions.execute();

}

public String getMessage() {
return MOVE_METHOD+" "+entity.getName()+" to class "+

foreignDataProvidersGroup.getElementAt(0).getName()+" for a better
behavior distribution";

}
}

Method checkPreconditions() creates the object that executes the actual refactor-
ing. This object subclasses the interface IRefactoring that we’ve implemented, which
means it can check initial conditions (through IRefactoring#checkInitialConditions()),
it can create a refactoring algorithm (through IRefactoring#createRefactoringAlgorithm())
and can execute that refactoring (IRefactoring#execute()). After creating the refactor-
ing object, it will delegate the initial conditions check to the checkInitialConditions()
method of this object. This method is the one that actually checks if the refactoring
can be safely executed. If the outcome of this check is valid, then the message re-
turned from the method getMessage() will appear in Tips View. This will look like in
figure 6.4.

Figure 6.4: Tips View for a Feature Envy

71

6.4. CONTINUOUS DETECTION AND CORRECTION BY EXAMPLE

When the user chooses to start the refactoring, he can click on the link that is
available in Tips View. This is the moment when the execute() method is called. This
method opens an application window to show the user the progress of the refactoring.
This wizard is consistent with the Eclipse user interface guidelines [LEHP06] and
looks the same for any restructuring that we’ve implemented. An example wizard is
depicted in figure 6.5. This screenshot is taken during the execution of the refactoring.

IInitialRefactoringConditions

ICompositeElement

IRefactoringAlgorithm

IRefactoringElement

IRefactoringElement

done

executing

IInitialRefactoringConditions

ICompositeElement

IRefactoringAlgorithm

IRefactoringElement

IRefactoringElement

done

executing

Figure 6.5: Refactoring wizard during execution

As it can be seen from the picture, the refactoring process is based on object com-
position, as a way to treat uniformly the execution process: a refactoring algorithm
(IRefactoringAlgorithm) consists of several composite elements (ICompositeElement),
which in turn are made up of a series of refactoring elements (IRefactoringElement).
When the execute() method is called, this delegates execution to its components and
so on. As it can be seen from the figure, the user knows at each moment what is
executing. A solution that would show the user the next steps that are to be executed
in advance could not be implemented as there are decisions involved in executing a
refactoring and they are made at runtime. After the refactoring is done executing, it
will show the status of the refactoring in the status of the wizard.

Figure 6.6: Refactoring wizard after the refactoring is done executing

6.4 Continuous Detection and Correction by Example

The works of Kerievsky [Ker05] and Feathers [Fea05] point out imperatively towards
focus our attention on higher-level, composite restructuring activities, that need to
be supported by tools. Thus, as mentioned in the previous section, as part of INCODE

(see Section 5.3) we developed a module that complements the problem detection
features with an essential correction component. This component is envisioned to act
as a “wizard” that guides the developer through a contextualized correction strategies
that will be defined for each design flaw that needs to be removed.

72

CHAPTER 6. IMPROVEMENT OF SOFTWARE DESIGN

In this section we will illustrate by a simple yet significant example the capacity
to automate in a continuous manner the detection of design problems, as well as its
context-sensitive support for automatic restructuring.

4b

4a

1

5

3

6

2

Figure 6.7: The various steps of using INCODE for design assessment, going from
writing a piece of code to the eventual restructuring.

The scenarios starts with Lisa, a typical developer, beginning to write the Rectangle
class (see Figure 6.72 - Step 1) in the editor window of Eclipse. The very moment she
finishes writing the 4 lines of the Rectangle class and saves the file, a red square –
which is an INCODE marker – appears on the left side ruler of her editor, on the line
where the class definition starts. This notifies her that INCODE has detected a poten-
tial design problem. By reading the code, you might have noticed that Rectangle is a
class that defines four public attributes, opening the gates for breaking encapsulation.
This problem is known in the literature as Data Class design flaw [FBB+99, Rie96].
So, every time Lisa is changing the file, on save INCODE executes its metrics-based
detection rules (see Section 3.2) and displays a red marker for each each design flaw
that has been detected in that source file.

By noticing the red INCODE marker, Lisa wants to find out what the problem is.
Because INCODE markers behave exactly like the standard Eclipse ones which signal-
ize compiler errors or warnings so it comes natural to Lisa to click on it (Step 2) and
find out that indeed the Data Class problem has been detected.

2The sequence of steps in our example are summarized in form of numerical labels (which we are
going to refer to in the following as Step X)

73

6.4. CONTINUOUS DETECTION AND CORRECTION BY EXAMPLE

Next, when Lisa decides to find out more about the problem, the INCODE TIPS

view is opened and she can read a detailed description of what the problem is. One
important thing here is that the description is not a presentation of what Data Class
means in general, but an explanation of why Rectangle, in particular, is reported by
INCODE as a Data Class (see text box next to Step 2). By reading the text you will also
notice that INCODE TIPS includes a section of Refactoring Tips, which in this particular
case advises Lisa to encapsulate the four attributes of Rectangle because they have no
reason to be declared public (as no one is using them from outside the class). Again,
the noteworthy aspect here is the context-sensitive nature of the refactoring advice.

Finally, there in another thing about this description that needs to be emphasized:
while both the detection of the problem and the additional description are based on
a significant amount of metrics and further dependency analysis, Lisa is not required
to have an understanding of these in order to use INCODE. Lisa does not even need
to know exactly what a Data Class is. We believe that this is an essential trait for
any QA tool in order to facilitate a wide adoption by developers: it has to hide the
complexity of the powerful analysis techniques that it uses under a presentation that
is easy to understand by developers. It is our tools that have to learn the language of
developers, not vice-versa.

Now, assume that after reading the description of the problem, Lisa decides to
momentarily ignore it and move on, writing class Client that uses the data members
exposed by Rectangle (Step 3). Again, a red marker appears left to the line where
the definition of method calculate starts. This is because calculate is affected by the
Feature Envy design problem [FBB+99], and INCODE detects it based on the detection
strategy defined in [LM06].

The first thing that Lisa may notice is that the description of the Rectangle Data
Class has been updated (Step 4a), and if Lisa didn’t close the INCODE TIPS view, the
update occurs automatically; the description now remarks the usage of Client.calculate
using the data of Rectangle. But, the most remarkable change is the one that occurs in
the Refactoring Tips part, as now, by the fact that three public members of Rectangle
are used from a single external class, INCODE can give different refactoring advices
(see description in Step 4a); the initial refactoring suggestion is maintained for the
height data member, but for the others, due to the new usage context, there are two
options: moving the three data members to the Client class or vice-versa, move the
calculate method to the Rectangle class.

Beyond the update of the Rectangle problem description, there is one even more
interesting thing for Lisa to see: the description of the Feature Envy problem de-
tected for calculate (Step 4b). Apart from the characteristics already emphasized
while presenting the description of the Rectangle Data Class (i.e., context-sensitivity,
continuous update, refactoring advices), there are two additional aspects of INCODE

TIPS revealed here: (i) the description contains a remark on the fact that the “foreign”
data used by calculate are defined in a class that has been detected as Data Class; (ii)
it has an additional refactoring section, called Quick Solution indicating that INCODE

has detected an actual refactoring that Lisa can launch in order to solve the Feature
Envy problem. In other words, INCODE TIPS supports the design improvement by (i)
providing information about meaningful correlations detected between various design
flaws and (ii) by identifying cases where “clear-cut” restructuring solution exist and
consequently by providing support for automating the code transformation process.

If Lisa decides to solve the problem by moving calculate to Rectangle, she selects
the link below Quick Solution which, in result, will start the restructuring process
(Step 5). As seen in Figure 6.7 the restructuring process consists of a sequence of
basic refactorings, which lead to a significantly better solution (Step 6) than a simple

74

CHAPTER 6. IMPROVEMENT OF SOFTWARE DESIGN

restructuring like the built-in Move Method refactoring in Eclipse.
In conclusion, with INCODE we took the first steps towards bridging the existing

gap between the detection and the correction of design problems by:

• creating tool-supported techniques for describing and executing contextual, problem-
driven restructuring strategies, that should relieve developers from manually
composing restructuring solutions based on atomic refactorings;

• synchronizing the detection and correction activities, so that most design prob-
lems become convenient to correct immediately after they are detected.

We believe that this approach will not only reduce significantly design degradation
and maintenance costs, but it will also improve continuously the design skills of
object-oriented programmers.

75

Part II

Future Plans

Chapter 7

Design Assessment and
Improvement: The Challenges

We plan to grow our research on several key directions. First we will continue the work
on better connecting assessment and correction activities. We also plan to investigate
how quality assessment can be efficiently applied to hybrid software systems which
mix different programming languages or even paradigms. Another plan is to conduct
a broad empirical validation of assessment techniques, by creating a comprehensive
metrics benchmarking methodology, operationalized by proper tools. We aim to per-
form this validation on at least 10.000 projects. The analysis results will be used to
calibrate the quality assessment techniques and to detect potential inconsistencies in
quality models.

7.1 Closing the Gap Between Flaw Detection and Correction

7.1.1 Impact Analysis of Correction Strategies

The direct modification of the source code is an expensive task, especially due to the
fact that a software system is not composed only from its source code and when a
modification is made on the source code, all the other parts of the system should
be updated, too (e.g., tests, diagrams, documentation). Additionally, after all the
modifications have been done, a new quality assessment is required in order to find
out if, and at which extent, the restructurings have really improved the quality of the
system.

Most of the times design flaws don’t exist in isolation (see Figure 3.2) and therefore,
correcting one problem might have a positive or/and negative impact on other parts
of the system. For example, correcting the case of a method affected by Feature Envy
might also lead to the disappearance of a Data Class, from which initially the method
was directly accessing data, as discussed in Section 6.3.3. This example is a rather
happy case. But it might also happen that a modification, usually an expensive one,
will not have a major impact over the global design quality of the system, or even
worsen it; and thus, the entire process of assessment and improvement needs to be
iterated over and over again.

In this context, our novel idea is to add build a tool-supported impact analysis
technique that would simulate a correction strategy on the model of the system before
committing the restructuring solution. This way the impact of the change can be
(automatically) assessed at a lower price. If the change has a major positive impact, it
can be performed on the source code, otherwise it will remain as a possible unfulfilled

79

7.2. EXTENDING AND REFINING DETECTION RULES

change. Thus, it will become possible to estimate the impact of a change over the
system.

In this context we envision the following usage scenario: the developer decides
to correct a particular design problem, that was revealed by the detection component
of the INCODE (or a similar tool). Consequently, she activates the correction compo-
nent and executes a correction strategy of her choice (see Section 6.3). At the end
of this correction process the impact analysis component will re-assess the overall
design quality of the system, in terms of detectable design flaws For example: How
many further design flaws were eliminated as a side-effect of applying the correction
plan/strategy? Did new design flaws occur as a consequence of applying the cor-
rection plan/strategy? How many? The results of this differential impact analysis
are presented to the developer who will decide if she wants to commit (keep) the new
version of the system resulted by applying the correction plan. Depending on the de-
cision of the engineer, the restructuring changes become permanent, or the system is
rolled back to its original state.

7.1.2 Extending Correction Strategies

As shown in Section 6.3, automating design flaw correction and detection is a feasible
task. Although so far we did define only a small set of such correction strategies, these
are far from being trivial. But there is still a lot more work to be done to improve them
and to encompass even the findings mentioned in Section 6.3. Using the approach
presented there, new design flaws and correction strategies can be created.

The next logical step would be to define a language that allows anyone to define a
design flaw correction and detection. This language should be as highly independent
of the programming language in which design flaws are to be corrected. This language
should provide means to ensure behavior preservation through the mechanism of
preconditions and postconditions.

Another possible area of investigation would be to extend these restructurings into
another programming language, most importantly procedural programming. As there
is already a large existing set of design rules and guidelines for these languages, as
well as a set of refactorings that can be applied, this transition is highly feasible.

Additionally, restructurings could be integrated with visualization techniques [LM06],
that allow the user to see how the structure of the class will look after the refactoring
was applied. Also a mechanism that asks the user input about the design intent and
context and based on that decides which path to follow can be implemented.

7.2 Extending and Refining Detection Rules

7.2.1 Extending Detection Rules for Multi-Paradigm Systems

Among the very complex software systems that the industry is confronted with, over
the last years a new type of application has emerged i.e., enterprise applications. An
enterprise application is a software product that manipulates lots of persistent data
and that interacts a lot with the user through a vast and complex user interface
[Fow05]. As a reflection of our society, enterprise applications are characterized by a
huge amount of heterogeneity: various implementation languages used in the same
project, multiple programming paradigms, multiples coexisting technologies etc.. As
we rely more and more on such systems, assuring their quality is a crucial concern.
Yet, due to their intrinsic heterogeneity the current quality assurance techniques (i.e.,
techniques for detecting design flaws in object-oriented systems) are necessary but

80

CHAPTER 7. DESIGN ASSESSMENT AND IMPROVEMENT: THE CHALLENGES

not sufficient. A novel layer of dedicated quality assurance techniques is needed in
order to address properly the multiple aspects of heterogeneity in design and imple-
mentation.

Fowler [Fow05] states that there are different sorts of software systems each of
them having its own category of problems and complexities. In order to be well de-
signed, an enterprise application must fulfill some specific design rules. Different
authors [Fow05, Noc03, Mar02a] have proposed in recent years such rules. For ex-
ample, we know that an enterprise software system consists of 3 layers: data- source
layer, the business logic layer and the presentation layer [Fow05]. For example, a
fundamental design rule for such systems states that the data layer and the logic
layer must not be depended on the presentation layer. Moreover, the logic layer must
be loosely coupled with the data layer in order to be able to replace the support that
ensures the date persistency (e.g., changing a relational database with an object-
oriented one). The detection high coupling between the logic and data layers needs
some advanced structural analysis (e.g., detecting lack of polymorphism).

As we have seen in Chapter 3, the usual process of quality assessment for object-
oriented systems starts from a set of quality assurance (QA) design rules and heuris-
tics [Rie96, Mar02c], which are first transformed into a set of quantifiable rules, which
can be then applied on the analyzed project, more precisely on the part of the project
which is designed in an object-oriented manner. The result is a set of design frag-
ments that are affected by design problems and that need to be restructured in order
to improve the quality of the system.

The main assumption of the aforementioned approach is that software systems
are homogenous (i.e., that they can be analyzed using only object-oriented QA rules).
But, such an approach ignores the relation to the persistency layer (which could
be for example a RDBMS) and makes no distinction between the user-interface and
the business domain part of an application. But addressing quality assurance in
this manner is less and less feasible as software applications become more heteroge-
neous. Summarizing, we can state that these drawbacks are caused by the intrinsic
heterogeneity of very complex systems (including enterprise applications). Enterprise
applications encapsulate different technologies, different paradigms and must fulfill
specific design rules and heuristics depending on the concrete type of the application.
All these aspects must be considered when the quality of the design and implementa-
tion are evaluated. Unfortunately, almost none of the analyses techniques take into
consideration this type of heterogeneity. In other words they unilaterally treat the
analyzed system. Because of this reason the current quality estimation techniques
strongly needs improvement.

In Figure 7.1 we depict our vision of a generic design quality assessment approach
for an enterprise software system. The approach takes into consideration the hetero-
geneity of such systems and the consequent need to reflect this characteristic in the
techniques used for quality assessment.

The first important distinction is that each of three layers of an enterprise applica-
tion (i.e., the presentation, the domain and the data-source layer) must be addressed
by a distinct set of specialized QA rules. These design rules exist for both the design
of user-interfaces and also for the design of databases. Based on these rules, prob-
lematic design fragments can be identified for the presentation and the data-source
layer. Yet, none of the three layers exist in isolation; consequently there is a significant
amount of the system’s complexity involved in the relation between these layers. This
brings us to the first two issues (marked in Figure 7.1 with the red bullets numbered
1 and 2):

• Problem 1: What are the proper QA design rules that specify the relation between

81

7.2. EXTENDING AND REFINING DETECTION RULES

Enterprise
Application

Problematic
Design Fragments

DOMAIN DATA

select most critical

1

PRESENTATION

QA Rules for
Object-Oriented

Design

QA Rules for
Database
Design

QA Rules for
User-Interface

Design 2

apply apply apply

identify
problems

3

restructure system

(future work)

apply apply

identify
problems

identify
problems

identify
problems

identify
problems

Figure 7.1: Quality assessment approach for an enterprise software system. The three
red numbered bullets mark the main problems

the presentation and the domain layer? How can these rules be made quantifi-
able? What is the proper tools support needed to detect these design problems
automatically?

• Problem 2: What are the proper QA design rules that specify the relation between
the domain and the data-source layer, especially if the data-source layer is based
on a relational database model? How can we overcome the paradigm shift? What
is the proper tool support needed to detect these design problems automatically?

As mentioned before, quality assessment is not a goal in itself. The real goal
is to improve the quality of the system by restructuring all the identified problems.
But assuming that for each layer a set of design fragments (i.e., classes, methods,
relations among database tables) are detected as containing design problems, the
number of such problematic fragments may increase significantly compared to the
more simplistic approach of pure object-oriented code. Consequently, it is highly
probable that it will not be economically feasible to address all the identified problems.
This brings us to the third issue that we want to address (marked in Figure 7.1 with
the red bullet numbered 3):

• Problem 3: How to define efficient (i.e., what must be restructured first?) and
cost-effective (i.e., what is the optimal restructuring option?) plans for improv-
ing the quality of the design? Thus, a strong methodology and tool support is
required in order to quickly asses the quality of a possible restructuring solution
in terms of human effort, time, cost and quality amelioration.

Over the last years we have partially addressed these issues within the LOOSE
Research Group, especially by addressing the first 2 problems for enterprise systems
[Mar07a, Mar07b] as well as for the specificities of distributed systems [CM08, CM07]
and, last but not least, for Lisp systems [DGM08]. However, the issue of specific
detection rules for multi-paradigm systems remains open; and, additionally, the third
problem (i.e., restructuring) has not yet been addressed.

82

CHAPTER 7. DESIGN ASSESSMENT AND IMPROVEMENT: THE CHALLENGES

7.2.2 Defect-Based Refinement of Detection Techniques

There are two major dimensions related to quality assurance in complex software
systems: (i) detection of defects (bugs) and (ii) detection and correction of design
flaws. In the past, significant research effort has been spent in each of these two
areas, but there is a total lack of correlation between these two dimensions: detection
of coding flaws is only studied ignoring the issue of design flaws and vice-versa. This
is because the communities addressing these two issues are working separately with
few connection points. Furthermore, there is a lack of correction focus; for example,
if the code changes due to refactoring/redesign/bug fixing, how do the original test
suites have to be adapted? Or vice-versa: if a bug is removed, resulting in a non-
negligible change to the code, how do we know that the change did not alter the
design structure (i.e., introduced a new instance of a design flaw)? And, last but not
least there is the issue of problems’ prioritization i.e., having a large list of design or
coding flaws, where do one start correcting them?

The integration of techniques related to design and coding flaw detection is an
important novelty. Traditionally targeted by different research communities, we plan
to take advantage of expertise in both areas in order explore their interaction and
synergies, increasing the efficiency of their joint use. Consequently, in this respect
we have a twofold future goal:

1. Study the correlation between design flaws and defects (bugs) i.e., to investigate
correlations between the presence of design and code flaws in terms of their
number, type, and evolution in time. This study will involve an investigation
of (i) numerical correlations (i.e., number of design flaws vs. number of code
flaws), (ii) typological correlations (which design flaws correlated with which code
flaws), and (iii) historical correlations (i.e., analyze the system versioning his-
tory to detect correlations between the presence of design and code flaws, such
as simultaneous appearance and disappearance, or weaker de-phased patterns
of correlation). For this study we plan use a significant number of large-scale
complex software systems, as this will allow us to investigate the correlation
on various programming languages, and thus strengthen the conclusions of the
study.

2. Investigate potential correlation means between defects and design flaws for fo-
cusing assessment activities. More exactly we will investigate how the dominant
presence of design flaws can focus the testing process; and vice-versa, how the
presence of a significant number of code flaws can trigger a redesign that would
improve code and thus reduce the the number of future code flaws. This focal-
ization can occur in two directions: (i) given the presence of many design flaws
in a design fragment (e.g., package or class hierarchy), this should focus a more
thorough (fine-grained) verification (e.g., test generation) of that code portion; or,
(ii) given the presence of many code flaws in a design fragment, raise the priority
of building and executing a correction strategy for that part of the system, as such
a restructuring may improve code understanding (e.g., complexity reduction of
a method by replacing large conditional blocks with a polymorphic method call)
and thus reduce the future risk of code flaws for that design fragment. As part
of our research methodology we plan to integrate at the tool level the testing and
the design assessment tools developed in the project and define a connection
module that would ensure the bidirectional focalization of the testing and design
assessment and correction as described above.

83

7.3. CALIBRATION OF METRICS FOR QUALITY ASSESSMENT

7.3 Calibration of Metrics for Quality Assessment

In order to grow the confidence of using metrics the issue of thresholds has to be
addressed with more rigor than it was addressed in the past [LM06]. Our main goal
in this direction is to provide a broad empirical validation of assessment techniques,
by creating a comprehensive metrics benchmarking methodology and by operational-
izing it using adequate tools. This will create a set of tools for automatically collecting
and analyzing a very large number (several thousands) of systems. The analysis re-
sults are used to calibrate the quality assessment techniques and to detect potential
inconsistencies in tools that implement the quality models.

7.3.1 Methodology for tool calibration and validation

The starting point is to define a concrete and comprehensive set of calibration and
validation goals, based on the quality assessment methods defined so far, and on the
tools that support them. The methodology will cover the following aspects:

• Validate the consistency and completeness of the analysis models extracted from
the various artifacts of projects. The tools involved in assessment rely on com-
plex analysis techniques, which in turn rely on proper fact (model) extractors.
As these must be usable for a large variety of software systems, it is essential to
make sure that the tools, and especially their model extractors, are validated on
a large number of extremely heterogeneous systems. In concrete terms, we will
define a set of checksum heuristic indicators that would reveal severe abnormali-
ties and/or inconsistencies in the extracted models.

• Define selection criteria for the projects used for calibration and validation,
namely to define criteria (e.g., programming language, maturity, use of a par-
ticular communication middleware or technology, application domain, etc.) for
selecting the actual projects on which the calibration and validation will take
place. Because calibration and validation need a large number of systems, our
goal is to select, according to the defined criteria, several thousand projects by
mining several of the most popular open-source repositories (e.g. SourceForge,
GitHub). Furthermore, by actively seeking collaborations with the industry we
will include in the investigated projects’ set any commercial software system that
we can get access to.

• Defining the calibration procedure. The goal of calibration is to makes sure that
the quality assessment techniques are appropriate for assessing state-of-the-art
systems, namely that it is neither too strict nor too lenient for existing systems.
The procedure will specify how to spot inappropriateness patterns when applying
quality models on the selected set of projects used for calibration. Furthermore,
the procedure will also provide the input needed for performing the refinements
of the weights and thresholds of the quality indicators used in these models.

7.3.2 Tools for calibration and validation

Performing such a large-scale calibration and validation is only possible if the method-
ology is automated to a large extent. Consequently, we will be focused on creating a
set of tools that will automatically mine open-source repositories, select and grab
projects according to the criteria defined in the methodology, feed them into the tools
and collect the results. These tools will be used in three steps:

84

CHAPTER 7. DESIGN ASSESSMENT AND IMPROVEMENT: THE CHALLENGES

• First, tools will analyze the entire project base and will report any abnormalities
in the checksum heuristic indicators defined as part of the methodology. These
abnormalities that reveal potential inconsistencies in the analysis models have
to be then addressed (either by improving the tools or by removing the results
from the outlier system) before the actual validation can take place.

• Next, the tools will analyze half of all the projects selected for calibration and
validation (in the range of thousands), and for each quality certification model
it will provide the results that will indicate and guide the needed refinement, if
such a refinement is necessary.

• Eventually, the same tools will perform the validation by analyzing the other half
of the selected projects

After the quality assessment tools have been updated to incorporate the calibrated
quality models, in this task we validate these models by analyzing the other half of the
project set, using again the tools implemented for this purpose. During this quanti-
tative analysis we will again observe if the adjustments performed during calibration
led to appropriate results on this new set of analyzed projects. However, this time the
statistical, quantitative analysis is doubled by a qualitative validation assessment.
Concretely, we will pick randomly three sample systems: one among those that were
ranked among the best by the quality model, one among the worst ranked and an
average ranked system. These three systems will be manually inspected in order to
validate the appropriateness of the classification provided by our quality models.

85

Part III

References

Bibliography

[ABF04] E. Arisholm, L.C. Briand, and A. Føyen. Dynamic Coupling Measure-
ment for Object-Oriented Software. Transactions on Software Engineer-
ing, 30(8), 2004.

[ADB10] J. Al Dallal and L.C. Briand. An object-oriented high-level design-based
class cohesion metric. Information and Software Technology, 52(12),
2010.

[ARK05] J. Alghamdi, R. Rufai, and S. Khan. OOMeter: A Software Quality Assur-
ance Tool. In International Conference on Software Maintenance (ICSM).
IEEE Computer Society Press, 2005.

[BBK+78] B. Boehm, J. Brown, H. Kaspar, M. Lipow, G. McLeod, and M. Merritt.
Characteristics of Software Quality. North Holland, 1978.

[BD02] J. Bansiya and C.G. Davis. A hierarchical model for object-oriented de-
sign quality assessment. IEEE Transactions on Software Engineering,
28(1), 2002.

[BDW98] Lionel C. Briand, John Daly, and Jürgen Wüst. A Unified Framework for
Cohesion Measurement in Object-Oriented Systems. Empirical Software
Engineering: An International Journal, 3(2), 1998.

[BDW99a] L.C. Briand, J.W. Daly, and J.K. Wüst. A Unified Framework for Cou-
pling Measurement in Object-Oriented Systems. IEEE Transactions on
Software Engineering, 25(1), 1999.

[BDW99b] L.C. Briand, J.W. Daly, and J.K. Wüst. Using coupling measurement for
impact analysis in object-oriented systems. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE 1999). IEEE Computer
Society Press, 1999.

[Bel02] S. Bellon. Vergleich von techniken zur erkennung duplizierten quell-
codes. Master’s Thesis, Institut fur Softwaretechnologie, Universitat
Stuttgart, Stuttgart, Germany, 2002.

[BK95] J.M. Bieman and B.K. Kang. Cohesion and reuse in an object-oriented
system. In Symposium on Software Reusability(ACM). ACM Press, 1995.

[BMM98] W.H. Brown, R.C. Malveau, and T.J. Mowbray. AntiPatterns: Refactoring
software, architectures, and projects in crisis. Wiley, 1998.

[BR88] V. Basili and H.D. Rombach. The TAME project: Towards Improvement-
Oriented Software Environments. IEEE Transactions on Software Engi-
neering, 14(6), 1988.

89

BIBLIOGRAPHY

[BR94] V. Basili and H. Rombach. Goal Question Metric paradigm. Encyclopedia
of Software Engineering, 1, 1994.

[CCI90] E. Chikofsky and J. Cross II. Reverse engineering and design recovery:
A taxonomy. IEEE Software, 7(1), 1990.

[Ciu99] O. Ciupke. Automatic detection of design problems in object-oriented
reengineering. In Proceedings of TOOLS USA. IEEE Computer Society
Press, 1999.

[CK94] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6), 1994.

[CM07] D.C. Cosma and R. Marinescu. Distributable features view: Visualizing
the structural characteristics of distributed software systems. In Visual-
izing Software for Understanding and Analysis(VISSOFT). IEEE Computer
Society Press, 2007.

[CM08] D.C. Cosma and R. Marinescu. Understanding the impact of distribu-
tion in object-oriented distributed systems using structural program de-
pendencies. In 12th European Conference on Software Maintenance and
Reengineering (CSMR), pages 103–112. IEEE Computer Society, 2008.

[Con09a] FLOSSMETRICS Consortium. The flossmetrics fp6 ec project.
http://www.flossmetrics.org/, 2009.

[Con09b] QualOSS Consortium. The qualoss fp6 ec project.
http://www.qualoss.org/, 2009.

[Con09c] SQO-OSS Consortium. The sqo-oss fp6 ec project. http://www.sqo-
oss.org/, 2009.

[Cop05] T. Copeland. Pmd applied, 2005.

[Cun92] W. Cunningham. The WyCash portfolio management system. In ACM
SIGPLAN OOPS Messenger, volume 4, 1992.

[CY91a] P. Coad and E. Yourdon. Object-Oriented Design. Prentice Hall, London,
2nd edition, 1991.

[CY91b] Peter Coad and Edward Yourdon. Object Oriented Design. Prentice-Hall,
1991.

[DDN03] S. Demeyer, S. Ducasse, and O.M. Nierstrasz. Object-oriented reengineer-
ing patterns. Morgan Kaufmann, 2003.

[DGM08] Adrian Dozsa, Tudor Gı̂rba, and Radu Marinescu. How Lisp systems
look different. In European Conference on Software Maintenance and
Re-Engineering (CSMR), pages 223–232. IEEE Computer Society Press,
2008.

[DGN05] Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Moose: an agile
reengineering environment. In Proceedings of ESEC/FSE 2005, pages
99–102, 2005.

90

BIBLIOGRAPHY

[DHH+11] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K. Lochmann,
and S. Wagner. The quamoco tool chain for quality modeling and as-
sessment. In Software Engineering (ICSE), 2011 33rd International Con-
ference on. IEEE Computer Society, 2011.

[DM86] T. De Marco. Controlling Software Projects: Management, Measurement,
and Estimates. Springer-Verlag, 1986.

[DPS05] F. Deissenboeck, M. Pizka, and T. Seifert. Tool support for continuous
quality assessment. In 13th IEEE International Workshop on Software
Technology and Engineering Practice. IEEE, 2005.

[Dro95] R.G. Dromey. A model for software product quality. IEEE Transactions
on Software Engineering, 21(2), 1995.

[DSP+07] F. Deissenboeck, S.Wagner, M. Pizka, S. Teuchert, and J.F. Girard. An
activity-based quality model for maintainability. In IEEE International
Conference on Software Maintenance. IEEE Computer Society Press,
2007.

[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

[Fea05] Michael C. Feathers. Working Effectively with Legacy Code. Prentice Hall,
2005.

[Fou11a] Eclipse Foundation. Java Development Tools. http://eclipse.org/jdt,
2001-2011.

[Fou11b] Eclipse Foundation. Eclipse Modeling Framework.
http://www.eclipse.org/modeling/emf, 2003-2011.

[Fow05] M. Fowler. Patterns of Enterprise Application Architecture. Addison Wes-
ley, 2005.

[Fow09] M. Fowler. Technical debt. Fowler’s Bliki,
http://martinfowler.com/bliki/TechnicalDebt.html, 2009.

[FP96] N. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, 1996.

[GDK+07] T. Gı̂rba, S. Ducasse, A. Kuhn, R. Marinescu, and D. Raţiu. Using con-
cept analysis to detect co-change patterns. In International Workshop on
Principles of Software Evolution (IWPSE). ACM Press, 2007.

[GHJ98] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. In International Conference on Software Mainte-
nance (ICSM). IEEE Computer Society Press, 1998.

[Gmb10] Odysseus Software GmbH. Stan - structure analysis for java.
http://stan4j.com/, 2010.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-
tions. Springer Verlag, 1999.

[HH04] A. Hassan and R. Holt. Predicting change propagation in software sys-
tems. In IEEE International Conference on Software Maintenance (ICSM).
IEEE Computer Society Press, 2004.

91

BIBLIOGRAPHY

[HS96] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Complex-
ity. Prentice-Hall, 1996.

[IBM10] IBM. Rational quality manager. http://www-
01.ibm.com/software/rational/, 2010.

[Inc10] Klocwork Inc. Klocwork insight. http://www.klocwork.com/products/insight,
2010.

[Ins10] Instantiations. Codepro analytix. http://www2.instantiations.com/codepro/analytix,
2010.

[ISO91] International Standard Organization. ISO 9126 - quality characteristics
and guidelines for their use. Brussels, 1991.

[JF88] R.E. Johnson and B. Foote. Designing reusable classes. Journal of
Object-Oriented Programming, 1(2), 1988.

[KDPG09] F. Khomh, M. Di Penta, and Y.G. Guéhéneuc. An exploratory study of
the impact of code smells on software change-proneness. In Working
Conference on Reverse Engineering. IEEE, 2009.

[KEGN01] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin. Automated sup-
port for program refactoring using invariants. In International Conference
on Software Maintenance(ICSM). IEEE Computer Society Press, 2001.

[Ker05] J. Kerievsky. Refactoring to Patterns. Pearson Education, 2005.

[KLPN97] B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni. The squid ap-
proach to defining a quality model. Software Quality Journal, 6(3), 1997.

[KP96] B. Kitchenham and S.L. Pfleeger. Software quality: the elusive tar-
get [special issues section]. IEEE Transactions on Software Engineering,
13(1), 1996.

[KPF95] B. Kitchenham, S.L. Pfleeger, and N. Fenton. Towards a framework for
software measurement validation. IEEE Transactions on Software Engi-
neering, 21(12), 1995.

[KTWW11] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams. An enterprise perspec-
tive on technical debt. In Proceedings of the 2nd Workshop on Managing
Technical Debt. ACM, 2011.

[Lak96] J. Lakos. Large Scale C++ Software Design. Addison Wesley, 1996.

[LC09] JL Letouzey and T. Coq. The sqale models for assessing the quality of
software source code. DNV Paris, white paper (September 2009), 2009.

[LD03] M. Lanza and S. Ducasse. Polymetric views—a lightweight visual ap-
proach to reverse engineering. IEEE Transactions on Software Engineer-
ing(TSE), 29(9), 2003.

[Leh96] M. Lehman. Laws of software evolution revisited. Software process tech-
nology, pages 108–124, 1996.

[LEHP06] J. Li, N. Edgar, K. Haaland, and K. Peter. Eclipse User Interface Guide-
lines. Addison-Wesley Professional, 2006.

92

BIBLIOGRAPHY

[LH93] W. Li and S. Henry. Maintenance metrics for the object oriented
paradigm. International Software Metrics Symposium., 1993.

[Lis87] B. Liskov. Data Abstraction and Hierarchy. In International Confer-
ence on Object Oriented Programming, Systems, Languages and Appli-
cations(OOPSLA). ACM Press, 1987.

[LK94] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical
Guide. Prentice-Hall, 1994.

[LM06] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[LPR+97] M. Lehman, D. Perry, J. Ramil, W. Turski, and P. Wernick. Metrics and
laws of software evolution–the nineties view. In International Software
Metrics Symposium(METRICS). IEEE Computer Society Press, 1997.

[LR89] K.J. Lieberherr and A.J. Riel. Contributions to teaching object ori-
ented design and programming. In International Conference on Object
Oriented Programming, Systems, Languages and Applications(OOPSLA).
ACM Press, 1989.

[M.88] Bertrand M. Object-Oriented Software Construction. Prentice-Hall, 1988.

[Mar99] R. Marinescu. A multi-layered system of metrics for the measurement
of reuse by inheritance. In Technology of Object-Oriented Languages and
Systems(TOOLS). IEEE Computer Society Press, 1999.

[Mar02a] F. Marinescu. Ejb Design Patterns: Advanced Patterns, Processes, and
Idioms with Poster. John Wiley & Sons, Inc., 2002.

[Mar02b] R. Marinescu. Measurement and Quality in Object-Oriented Design.
PhD thesis, Department of Computer Science, Politehnica University of
Timişoara, 2002.

[Mar02c] R.C. Martin. Agile Software Development. Principles, Patterns, and Prac-
tices. Prentice-Hall, 2002.

[Mar04] R. Marinescu. Detection strategies: Metrics-based rules for detecting
design flaws. In International Conference on Software Maintenance(ICSM).
IEEE Computer Society Press, 2004.

[Mar05] R. Marinescu. Measurement and quality in object-oriented design. In In-
ternational Conference on Software Maintenance (ICSM). IEEE Computer
Society Press, 2005.

[Mar07a] C. Marinescu. Discovering the objectual meaning of foreign key con-
straints in enterprise applications. In Working Conference on Reverse
Engineering(WCRE). IEEE Computer Society Press, 2007.

[Mar07b] C. Marinescu. Identification of relational discrepancies between
database schemas and source-code in enterprise applications. In Sym-
bolic and Numeric Algorithms for Scientific Computing(SYNASC). IEEE
Computer Society Press, 2007.

[Mar12] R. Marinescu. Assessing technical debt by identifying design flaws in
software systems. IBM Journal of Research and Development, 56(5 (to
appear)), 2012.

93

BIBLIOGRAPHY

[McC76] T.J. McCabe. A measure of complexity. IEEE Transactions on Software
Engineering, 2(4), 1976.

[McC07] S. McConnell. Technical debt. 10x Software Development,
http://bit.ly/McConnell07TechnicalDebt, 2007.

[MD03] T. Mens and A. Van Deursen. Refactoring: Emerging trends and open
problems, 2003.

[MG10] R. Marinescu and G. Ganea. inCode.Rules: An agile approach for defin-
ing and checking architectural constraints. In International Conference
on Intelligent Computer Communication and Processing (ICCP). IEEE Com-
puter Society Press, 2010.

[MGDLM10] N. Moha, Y.G. Guéhéneuc, L. Duchien, and A.F. Le Meur. DECOR: A
method for the specification and detection of code and design smells.
IEEE Transactions on Software Engineering, 36(1), 2010.

[MGV10] R. Marinescu, G. Ganea, and I. Verebi. inCode: Continuous quality as-
sessment and improvement. In Conference on Software Maintenance and
Reengineering (CSMR). IEEE Computer Society Press, 2010.

[MM05] P. Mihancea and R. Marinescu. Towards the optimization of automatic
detection of design flaws in object-oriented software systems. In Con-
ference on Software Maintenance (CSMR). IEEE Computer Society Press,
2005.

[MM11] R. Marinescu and C. Marinescu. Are the clients of flawed classes (also)
defect prone? In Source Code Analysis and Manipulation (SCAM). IEEE
Computer Society Press, 2011.

[MMG05] C. Marinescu, R. Marinescu, and T. Gı̂rba. Towards a simplified imple-
mentation of object-oriented design metrics. In Symposium on Software
Metrics (METRICS). IEEE Computer Society Press, 2005.

[MMM+05] Cristina Marinescu, Radu Marinescu, Petru Mihancea, Daniel Ratiu, and
Richard Wettel. iPlasma: An integrated platform for quality assessment
of object-oriented design. In Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM), pages 77–80. IEEE Com-
puter Society, 2005.

[Moo96] I. Moore. Automatic Inheritance Hierarchy Restructuring and Method
Refactoring. In Object-Oriented Programming Systems, Languages, and
Applications(OOPSLA). ACM Press, 1996.

[MR04] R. Marinescu and D. Raţiu. Quantifying the quality of object-oriented
design: the Factor-Strategy model. In Working Conference on Reverse
Engineering (WCRE). IEEE Computer Society Press, 2004.

[MRW76] J. McCall, P. Richards, and G. Walters. Factors in Software Quality. NTIS
Springfield, 1976.

[Mun05] M.J. Munro. Product metrics for automatic identification of bad smell
design problems in java source-code. In Symposium on Software Metrics
(METRICS). IEEE Computer Society Press, 2005.

94

BIBLIOGRAPHY

[Noc03] C. Nock. Data access patterns: database interactions in object-oriented
applications. Prentice Hall Professional Technical Reference, 2003.

[OCN99] M. Ó Cinnéide and P. Nixon. A methodology for the automated introduc-
tion of design patterns. In International Conference on Software Mainte-
nance(ICSM). IEEE Computer Society Press, 1999.

[oM10] University of Maryland. Findbugs. http://findbugs.sourceforge.net/,
2010.

[Opd92] W.F. Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis,
University of Illinois, 1992.

[Par94] D.L. Parnas. Software aging. In International Conference on Software
Engineering(ICSE). IEEE Computer Society Press, 1994.

[plu] JDeodorant Eclipse plugin. http://www.jdeodorant.com/.

[Pre10] R.S. Pressman. Software Engineering: A Practitioner’s Approach, 7th Edi-
tion. McGraw-Hill, 2010.

[RBJ97] D. Roberts, J. Brant, and R. Johnson. Theory and practice of object
systems. Theor. Pract. Object Syst., 3(4), 1997.

[RDGM04] D. Raţiu, S. Ducasse, T. Gı̂rba, and R. Marinescu. Using history in-
formation to improve design flaws detection. In Conference on Software
Maintenance and Reengineering (CSMR). IEEE Computer Society Press,
2004.

[Rie96] A. Riel. Object-Oriented Design Heuristics. Addison Wesley, 1996.

[Rob99] D.B. Roberts. Practical Analysis for Refactoring. PhD thesis, University
of Illinois, 1999.

[SBL01] H.A. Sahraoui, M. Boukadoum, and H. Lounis. Building quality estima-
tion models with fuzzy threshold values. L’objet, 17(4), 2001.

[Sof10] Headway Software. Structure 101. http://www.headwaysoftware.com,
2010.

[Son10] SonarSource. Sonar. http://www.sonarsource.org, 2010.

[SSL01] Frank S., F. Steinbrückner, and C. Lewerentz. Metrics based refactoring.
In Conference on Software Maintenance and Reengineering(CSMR). IEEE
Computer Society Press, 2001.

[Ste11] C. Sterling. Managing Software Debt. Addison-Wesley, 2011.

[TC] N. Tsantalis and A. Chatzigeorgiou. Identification of move method refac-
toring opportunities. IEEE Transactions on Software Engineering, 35(3).

[TM05] A. Trifu and R. Marinescu. Diagnosing design problems in object ori-
ented systems. In Working Conference on Reverse Engineering (WCRE).
IEEE Computer Society Press, 2005.

[Tri08] A. Trifu. Towards Automated Restructuring of Object Oriented Systems.
Kit Scientific Publishing, 2008.

95

BIBLIOGRAPHY

[Ver09] I. Verebi. Automation of complex design restructurings. Master’s thesis,
Politehnica University of Timisoara, 2009.

[Vit03] M. Vittek. Refactoring browser with preprocessor. In Conference on
Software Maintenance and Reengineering(CSMR). IEEE Computer Soci-
ety Press, 2003.

[Web05] SDMetrics Website. Sdmetrics, 2005.

[Web10] Checkstyle Website. The checkstyle plugin for eclipse. http://eclipse-
cs.sourceforge.net/, 2010.

[WH] N. Wilde and R. Huitt. Maintenance support for object-oriented pro-
grams. IEEE Transactions on Software Engineering, (12).

[WM05] R. Wettel and R. Marinescu. Archeology of code duplication: Recover-
ing duplication chains from small duplication fragments. In Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).
IEEE Computer Society Press, 2005.

[ZWDZ04] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version
histories to guide software changes. In International Conference on Soft-
ware Engineering (ICSE). IEEE Computer Society Press, 2004.

96

	I Achievements
	Introduction
	Context and Motivation
	Research Roadmap
	Summary of Contributions and Impact
	Major Contributions
	Citations
	Awards
	Community Service
	LOOSE: an Educational Innovation

	Research Environment and Funding
	LOOSE Research Group
	Research Grants

	Measurement of Software Design
	Problem Statement
	Design Models: the Foundation of Measurement
	SAIL: Specification of Design Metrics
	Determining Metric Thresholds
	The Overview Pyramid
	Components of the Overview Pyramid
	Interpreting the Overview Pyramid

	Detection of Design Flaws
	Problem Statement
	Detection Strategies: Rules for Detecting Design Flaws
	Defining a Detection Strategy
	Detection Strategies Exemplified
	The Issue of Thresholds
	Web of Correlated Detection Strategies

	History-Enriched Detection of Design Flaws
	Refining Detection Rules
	Detecting History-Specific Flaws

	Detection of Duplicated Code
	Verification of Architectural Constraints

	Assessment of Design Quality
	Problem Statement
	Factory-Strategy Quality Model
	Limitations of Factor-Criteria-Metrics Models
	Factor-Strategy Model: Construction Principle
	Stepwise Construction Methodology
	A Factor-Strategy Model for Maintainability

	Assessing Technical Debt
	Framework for Assessing Debt Symptoms
	Experimental Remarks

	Automation of Design Assessment
	Problem Statement
	iPlasma: an Integrated Quality Assessment Platform
	MEMORIA and the Model Extractors
	Analyses for Quality Assessment
	Insider: the Integrating Front-end

	inCode: Continuous Quality Assessment
	Continuous assessment mode
	Global assessment mode

	Improvement of Software Design
	Problem Statement
	Correction Plans
	Correction Strategies
	Detection Strategy
	Suggested Correction Plans
	Implementation of the Correction Strategy

	Continuous Detection and Correction by Example

	II Future Plans
	Design Assessment and Improvement: The Challenges
	Closing the Gap Between Flaw Detection and Correction
	Impact Analysis of Correction Strategies
	Extending Correction Strategies

	Extending and Refining Detection Rules
	Extending Detection Rules for Multi-Paradigm Systems
	Defect-Based Refinement of Detection Techniques

	Calibration of Metrics for Quality Assessment
	Methodology for tool calibration and validation
	Tools for calibration and validation

	III References
	Bibliography

